THE GROUP OF GRAPH AUTOMORPHISMS

 OVER A MATRIX RINGSangwon Park and Juncheol Han

Abstract

Let $R=\operatorname{Mat}_{2}(F)$ be the ring of all 2 by 2 matrices over a finite field F, X the set of all nonzero, nonunits of R and G the group of all units of R. After investigating some properties of orbits under the left (and right) regular action on X by G, we show that the graph automorphisms group of $\Gamma(R)$ (the zero-divisor graph of R) is isomorphic to the symmetric group $S_{|F|+1}$ of degree $|F|+1$.

1. Introduction

The zero-divisor graph of a commutative ring has been studied extensitively by Akbari, Anderson, Frazier, Lauve, Livinston and Mohammadian in [1, 2, 3] since its concept had been introduced by Beck in [4]. Recently, the zero-divisor graph of a noncommutative ring (resp. a semigroup) has also been studied by Redmond and Wu (resp. F. DeMeyer and L. DeMeyer) in [10, 11, 12] (resp. [5]). The zero-divisor graph has been used to study the algebraic structures of rings via their zero-divisors. In this paper, the group of the zero-divisor graph automorphisms over a matrix ring over a finite field is investigated by considering some group actions.

For a ring R with identity, let $Z(R)$ be the set of all left or right zerodivisors of $R, \Gamma(R)$ be the zero-divisor graph of R consisting of all vertices in $Z(R)^{*}=Z(R) \backslash\{0\}$, the set of all nonzero left or right zero-divisors of R, and edges $x \longrightarrow y$, which means that $x y=0$ for $x, y \in Z(R)^{*}$.

For a ring R with identity, let $X(R)$ (simply, denoted by X) be the set of all nonzero, nonunits of $R, G(R)$ (simply, denoted by G) be the group of all units of R. In this paper, we will consider some group actions on X by G given by $(g, x) \longrightarrow g x$ (resp. $(g, x) \longrightarrow x g^{-1}$) from $G \times X$ to X, called the left (resp. right) regular action. If $\phi: G \times X \longrightarrow X$ is the left (resp. right) regular action,

[^0]then for each $x \in X$, we define the orbit of x by $o_{\ell}(x)=\{\phi(g, x)=g x: g \in G\}$ (resp. $\left.o_{r}(x)=\left\{\phi(g, x)=x g^{-1}: g \in G\right\}\right)$.

In Section 2, we will show that if $R=\operatorname{Mat}_{2}(F)$ with F a finite field, then (1) the number of orbits under the left (resp. right) regular action on X by G is $|F|+1 ;(2)$ if N is the set of all nonzero nilpotents in R, then $|N|=|F|^{2}-1$ and $o_{\ell}(x) \cap o_{r}(x)=o_{\ell}(x) \cap N=o_{r}(x) \cap N$ for all $x \in N ;(3)\left|o_{\ell}(x) \cap o_{r}(y)\right|=|F|-1$ for all $x, y \in X$.

We recall that for all $x \in X$ the set $\operatorname{ann}_{\ell}(x)=\{y \in X: y x=0\}$ (resp. $\operatorname{ann}_{r}(x)=\{z \in X: x z=0\}$) is called a left (resp. right) annihilator of x. Let $a n n_{\ell}^{*}(x)=a n n_{\ell}(x) \backslash\{0\}$ (resp. $\left.\operatorname{ann}_{r}^{*}(x)=a n n_{r}(x) \backslash\{0\}\right)$.

A graph automorphism f of a graph $\Gamma(R)$ (where R denotes a ring) is defined to be a bijection $f: \Gamma(R) \longrightarrow \Gamma(R)$ which preserves adjacency. Note that the set $\operatorname{Aut}(\Gamma(R))$ of all graph automorphisms of $\Gamma(R)$ forms a group under the usual composition of functions. In [3], Anderson and Livingston have shown that $\operatorname{Aut}\left(\Gamma\left(\mathbb{Z}_{n}\right)\right.$ is a (finite) direct product of symmetric groups for $n \geq 4 \mathrm{a}$ nonprime integer. For the case of noncommutative rings, it was shown by [8] that when $R=\operatorname{Mat}_{2}\left(\mathbb{Z}_{p}\right)(p$ is a prime $), \operatorname{Aut}(\Gamma(R)) \simeq S_{p+1}$, the symmetric group of degree $p+1$. In Section 3, for the continuation of these investigation, we prove that $\operatorname{Aut}(\Gamma(R)) \simeq S_{|F|+1}$ when $R=\operatorname{Mat}_{2}(F)$ with F a finite field.

2. Orbits under the regular action in $\operatorname{Mat}_{2}(F)$

Recall that G is transitive on X (or G acts transitively on X) under the left (resp. right) regular action on X by G if there is an $x \in X$ with $o_{\ell}(x)=X$ (resp. $o_{r}(x)=X$) and the left (resp. right) regular action of G on X is said to be half-transitive if G is transitive on X or if $o_{\ell}(x)$ (resp. $o_{r}(x)$) is a finite set with $\left|o_{\ell}(x)\right|>1$ (resp. $\left.\left|o_{r}(x)\right|>1\right)$ and $\left|o_{\ell}(x)\right|=\left|o_{\ell}(y)\right|\left(\right.$ resp. $\left.\left|o_{r}(x)\right|=\left|o_{r}(y)\right|\right)$ for all x and $y \in X$. In [7, Theorem 2.4 and Lemma 2.7], it was shown that if $R=\operatorname{Mat}_{2}(F)$ with F a finite field, then G is half-transitive on X by the left (resp. right) regular action and $\left|o_{\ell}(x)\right|=|F|^{2}-1$ (resp. $\left|o_{r}(x)\right|=|F|^{2}-1$) for all $x \in X$.

Lemma 2.1. Let $R=\operatorname{Mat}_{2}(F)$ with F a finite field. Then the number of orbits under the left (resp. right) regular action on X by G is $|F|+1$.

Proof. Let μ be the number of orbits under the left (resp. right) regular action on X by G. Note that $|G|=\left(|F|^{2}-1\right)\left(|F|^{2}-|F|\right)$. Thus $|X|=|R|-|G|-1=$ $|F|^{4}-\left(|F|^{2}-1\right)\left(|F|^{2}-|F|\right)-1=(|F|+1)\left(|F|^{2}-1\right)$. Since the cardinality of any orbit under the left (resp. right) regular action on X by G is $|F|^{2}-1$ by [7, Lemma 2.7], $\mu=|X| /\left(|F|^{2}-1\right)=|F|+1$.

The following theorem was shown in [6].
Theorem 2.2. The probability that n by n matrix over $G F\left(p^{\alpha}\right)$ be nilpotent is $p^{\alpha n}$

Proof. Refer [6, Theorem 1].

By Theorem 2.2, we note that the number of all 2 by 2 nonzero nilpotent matrices over a finite field F is equal to $|F|^{2}-1$.

Theorem 2.3. Let $R=\operatorname{Mat}_{2}(R)$ with F a finite field and N be the set of all nonzero nilpotents in R. Then under the left (resp. right) regular action on X by G, we have the following.
(i) $\left|o_{\ell}(x) \cap N\right|=|F|-1$;
(ii) $o_{\ell}(x) \cap N=o_{r}(x) \cap N=o_{\ell}(x) \cap o_{r}(x)$ for each $x \in N$.

Proof. (i) Consider the set $S_{x}=\{(\alpha I) x \mid \alpha \in F \backslash\{0\}\}$ for each $x \in N$ where I is the identity matrix in R. Since $(\alpha I) x=x(\alpha I)$ for all $(\alpha I) x \in S, S_{x} \subseteq$ $o_{\ell}(x) \cap N, o_{r}(x) \cap N$. Note that for all $\alpha, \beta \in F \backslash\{0\}(\alpha \neq \beta),(\alpha I) x \neq(\beta I) x$, and so $\left|S_{x}\right|=|F|-1$. Next, we will show that $o_{\ell}(x) \cap N \subseteq S_{x}$. Let $y \in o_{\ell}(x) \cap N$ be arbitrary. Let

$$
x=\left[\begin{array}{cc}
-\alpha b & b \\
-\alpha^{2} b & \alpha b
\end{array}\right] \in N \quad \text { for some } \quad b(\neq 0), \alpha \in F
$$

Since $y \in o_{\ell}(x), y=g x$ for some $g \in G$. Let $g=\left[\begin{array}{cc}p & q \\ r & s\end{array}\right] \in G$. Then

$$
y=\left[\begin{array}{cc}
p & q \\
r & s
\end{array}\right]\left[\begin{array}{cc}
-\alpha b & b \\
-\alpha^{2} b & \alpha b
\end{array}\right]=\left[\begin{array}{ll}
-(p+q \alpha) \alpha b & (p+q \alpha) b \\
-(r+s \alpha) \alpha b & (r+s \alpha) b
\end{array}\right] \in o_{\ell}(x)
$$

Since $y \in N$, we have $(p+q \alpha) \alpha=(r+s \alpha)(\neq 0)$ by the proof of Lemma 2.2, and so

$$
y=\left[\begin{array}{cc}
p+q \alpha & 0 \\
0 & p+q \alpha
\end{array}\right]\left[\begin{array}{cc}
-\alpha b & b \\
-\alpha^{2} b & \alpha b
\end{array}\right]=((p+q \alpha) I) x \in S_{x}
$$

Therefore, $o_{\ell}(x) \cap N \subseteq S_{x}$, and consequently we have $S_{x}=o_{\ell}(x) \cap N$. By the similar argument, we have also $S_{x}=o_{r}(x) \cap N$. Hence $o_{\ell}(x) \cap N=o_{r}(x) \cap N$ and $\left|o_{\ell}(x) \cap N\right|=\left|o_{r}(x) \cap N\right|=\left|S_{x}\right|=|F|-1$ for each $x \in N$.
(ii) By the proof of (i), we have that $o_{\ell}(x) \cap N=o_{r}(x) \cap N$ for each $x \in N$. Note that $S_{x}=o_{\ell}(x) \cap N\left(=o_{r}(x) \cap N\right) \subseteq o_{\ell}(x) \cap o_{r}(x)$ for each $x \in N$ where S_{x} is the set considered in the proof of (i). Let $y \in o_{\ell}(x) \cap o_{r}(x)$ be arbitrary and let

$$
x=\left[\begin{array}{cc}
-\alpha \beta & \beta \\
-\alpha^{2} \beta & \alpha \beta
\end{array}\right] \in N \quad(\forall \alpha \in F, \forall \beta \in F \backslash\{0\})
$$

be arbitrary. Then there exist $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], h=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right] \in G$ such that $y=g x=x h$.
Thus

$$
g x=\left[\begin{array}{ll}
a & b \tag{1}\\
c & d
\end{array}\right]\left[\begin{array}{cc}
-\alpha \beta & \beta \\
-\alpha^{2} \beta & \alpha \beta
\end{array}\right]=\left[\begin{array}{cc}
-\alpha \beta(a+b \alpha) & \beta(a+b \alpha) \\
-\alpha \beta(c+d \alpha) & \beta(c+d \alpha)
\end{array}\right]
$$

$$
x h=\left[\begin{array}{cc}
-\alpha \beta & \beta \tag{2}\\
-\alpha^{2} \beta & \alpha \beta
\end{array}\right]\left[\begin{array}{cc}
p & q \\
r & s
\end{array}\right]=\left[\begin{array}{cc}
-\beta(\alpha p-r) & -\beta(\alpha q-s) \\
-\alpha \beta(\alpha p-r) & -\alpha \beta(\alpha q-s)
\end{array}\right]
$$

Let $\gamma=-\beta(\alpha q-s)(=(1,2)-$ entry of $y=x h)$. From (1) and (2), we have that

$$
y=\left[\begin{array}{cc}
-\alpha \gamma & \gamma \\
-\alpha^{2} \gamma & \alpha \gamma
\end{array}\right] \in N
$$

and so $o_{\ell}(x) \cap o_{r}(x) \subseteq o_{\ell}(x) \cap N$ for each $x \in N$. Hence $o_{\ell}(x) \cap o_{r}(x)=o_{\ell}(x) \cap N$ for each $x \in N$. Similarly, we have $o_{\ell}(x) \cap o_{r}(x)=o_{r}(x) \cap N$ for each $x \in N$.

Remark 1. Let $R=\operatorname{Mat}_{2}(R)$ with F a finite field and N be the set of all nonzero nilpotents in R. Choose $x_{1} \in N$ so that $S_{x_{1}}=\left\{(\alpha I) x_{1} \mid \alpha \in F \backslash\{0\}\right\} \subset N$. By Theorem 2.3, o $o_{\ell}\left(x_{1}\right) \cap N=S_{x_{1}}$. Since $|N|=|F|^{2}-1$ by Theorem 2.2 and $\left|S_{x_{1}}\right|=|F|-1$ by Theorem 2.3, we can choose $x_{2} \in N \backslash S_{x_{1}}$. Then $S_{x_{1}}=o_{\ell}\left(x_{1}\right) \cap N$ and $S_{x_{2}}=o_{\ell}\left(x_{2}\right) \cap N$ are disjoint. Continuing in this way, we can choose $x_{1}, x_{2}, \ldots, x_{|F|+1} \in N$ so that $x_{i+1} \in N(R) \backslash\left(S_{x_{1}} \cup S_{x_{2}} \cup \cdots \cup S_{x_{i}}\right)$ for all $i=1, \ldots,|F|$. Then we have

$$
\begin{aligned}
N & =S_{x_{1}} \cup S_{x_{2}} \cup \cdots \cup S_{x_{|F|+1}} \\
& =\left[o_{\ell}\left(x_{1}\right) \cap N\right] \cup\left[o_{\ell}\left(x_{2}\right) \cup N\right] \cup \cdots \cup\left[o_{\ell}\left(x_{|F|+1}\right) \cap N\right],
\end{aligned}
$$

which is a disjoint union of N. Observe that $o_{\ell}\left(x_{1}\right), o_{\ell}\left(x_{2}\right), \ldots, o_{\ell}\left(x_{|F|+1}\right)$ are disjoint (equivalently, they are all distinct). Indeed, assume that there exist $o_{\ell}\left(x_{i}\right)$ and $o_{\ell}\left(x_{j}\right)$ for some $i, j(i<j, i \neq j)$ such that $o_{\ell}\left(x_{i}\right)=o_{\ell}\left(x_{j}\right)$. Then $x_{j} \in o_{\ell}\left(x_{i}\right) \cap N=S_{x_{i}}$, and so $S_{x_{j}} \subseteq S_{x_{i}}$, which is a contradiction. Since the number of orbits under the left regular action on X by G is $|F|+1$ by Lemma 2.1, $X=o_{\ell}\left(x_{1}\right) \cup o_{\ell}\left(x_{2}\right) \cup \cdots \cup o_{\ell}\left(x_{|F|+1}\right)$. By the similar argument, we have $X=o_{r}\left(x_{1}\right) \cup o_{r}\left(x_{2}\right) \cup \cdots \cup o_{r}\left(x_{|F|+1}\right)$.

Lemma 2.4. Let $R=\operatorname{Mat}_{2}(R)$ with F a finite field and N be the set of all nonzero nilpotents in R. Then for all $x, y \in N, y=g x g^{-1}$ for some $g \in G$.

Proof. Consider a group action on X by G given by $(g, x) \longrightarrow g x g^{-1}$ from $G \times X$ to X, called conjugation.

Take $a=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in N$. Let $o_{c}(a)=\left\{g a g^{-1} \mid g \in G\right\}$ be the orbit of a under conjugation, and $\operatorname{stab}_{c}(a)=\{g \in G \mid g a=a g\}$ be the stabilizer of a under conjugation. Then we have

$$
\operatorname{stab}_{c}(a)=\left\{\left.\left[\begin{array}{cc}
s & t \\
0 & s
\end{array}\right] \in G \right\rvert\, s(\neq 0), t \in F\right\}
$$

by easy computation, and so $\left|\operatorname{stab}_{c}(a)\right|=(|F|-1)|F|$. Hence

$$
\left|o_{c}(a)\right|=\frac{|G|}{\left|\operatorname{stab}_{c}(a)\right|}=\frac{\left(|F|^{2}-|F|\right)\left(|F|^{2}-1\right)}{(|F|-1)|F|}=|F|^{2}-1=|N| .
$$

Since $o_{c}(a) \subseteq N, o_{c}(a)=N$. Therefore we have the result.
Theorem 2.5. Let $R=\operatorname{Mat}_{2}(R)$ with F a finite field and N be the set of all nonzero nilpotents in R. Then under the left (resp. right) regular action on X by $G,\left|o_{\ell}(x) \cap o_{r}(y)\right|=|F|-1$ for each $x, y \in X$.

Proof. First, we will show that $o_{\ell}(x) \cap o_{r}(y) \neq \emptyset$ for each $x, y \in X$. By Remark 1, we can choose $x_{1}, \ldots, x_{|F|+1}$ (resp. $y_{1}, \ldots, y_{|F|+1}$) in N so that $X=o_{\ell}\left(x_{1}\right) \cup \cdots \cup o_{\ell}\left(x_{|F|+1}\right)$ (resp. $X=o_{r}\left(y_{1}\right) \cup \cdots \cup o_{r}\left(y_{|F|+1}\right)$. Thus $o_{\ell}(x)=$ $o_{\ell}\left(x_{i}\right)$ and $o_{r}(y)=o_{r}\left(y_{j}\right)$ for some $x_{i}, y_{j} \in N$. Observe that $o_{\ell}\left(x_{i}\right) \cap o_{r}\left(y_{j}\right) \neq \emptyset$. Indeed, since x_{i} and y_{j} are nonzero nilpotents in $R, y_{j}=g x_{i} g^{-1}$ for some $g \in G$ by Lemma 2.4. Hence $o_{\ell}\left(x_{i}\right) \cap o_{r}\left(y_{j}\right)=o_{\ell}\left(x_{i}\right) \cap o_{r}\left(g x_{i} g^{-1}\right)=o_{\ell}\left(g x_{i}\right) \cap o_{r}\left(g x_{i}\right)$ contains an element $g x_{i} \in X$, and so $o_{\ell}(x) \cap o_{r}(y)=o_{\ell}\left(x_{i}\right) \cap o_{r}\left(y_{j}\right) \neq \emptyset$.

Next, we will show that $\left|o_{\ell}(x) \cap o_{r}(y)\right|=|F|-1$ for each $x, y \in X$. Since $o_{\ell}(x) \cap o_{r}(y) \neq \emptyset$ for each $x, y \in X$, we choose $z \in o_{\ell}(x) \cap o_{r}(y)$, and then $o_{\ell}(z) \cap o_{r}(z)=o_{\ell}(x) \cap o_{r}(y)$. Consider a set $S_{z}=\{(\alpha I) z \mid \alpha \in F \backslash\{0\}\}$ where I is the identity matrix in R. Since $(\alpha I) z=z(\alpha I)$ for all $(\alpha I) z \in S$, $S_{z} \subseteq o_{\ell}(x) \cap o_{r}(x)$. Note that for all $\alpha, \beta \in F \backslash\{0\}(\alpha \neq \beta),(\alpha I) z \neq(\beta I) z$, and so $\left|S_{z}\right|=|F|-1$. Thus $\left|o_{\ell}(x) \cap o_{r}(y)\right|=\left|o_{\ell}(z) \cap o_{r}(z)\right| \geq\left|S_{z}\right|=|F|-1$. Since $X=o_{\ell}\left(x_{1}\right) \cup \cdots \cup o_{\ell}\left(x_{|F|+1}\right)$, we have $o_{r}(y)=X \cap o_{r}(y)=\left[o_{\ell}\left(x_{1}\right) \cap o_{r}(y)\right] \cup \cdots \cup$ $\left[o_{\ell}\left(x_{|F|+1}\right) \cap o_{r}(y)\right]$. Clearly, $o_{\ell}\left(x_{1}\right) \cap o_{r}(y), \ldots, o_{\ell}\left(x_{|F|+1}\right) \cap o_{r}(y)$ are disjoint, and thus $\left|o_{r}(y)\right|=|F|^{2}-1=\left|o_{\ell}\left(x_{1}\right) \cap o_{r}(y)\right|+\cdots+\left|o_{\ell}\left(x_{|F|+1}\right) \cap o_{r}(y)\right| \geq$ $(|F|-1)(|F|+1)=|F|^{2}-1$, which implies that $\left|o_{\ell}\left(x_{1}\right) \cap o_{r}(y)\right|=\cdots=$ $\left|o_{\ell}\left(x_{|F|+1}\right) \cap o_{r}(y)\right|=|F|+1$. Since $o_{\ell}(x)=o_{\ell}\left(x_{i}\right)$ for some $x_{i} \in N$, we have that $\left|o_{\ell}(x) \cap o_{r}(y)\right|=\left|o_{\ell}\left(x_{i}\right) \cap o_{r}(y)\right|=|F|-1$ for each $x, y \in X$.

The following example illustrates Theorem 2.3 and Theorem 2.5 for a certain finite field.

Example 1. Consider $F=\mathbb{Z}_{2}[x] /\left\langle 1+x+x^{2}\right\rangle$, a field of order 4 where \mathbb{Z}_{2} is the Galois field of order 2. To simplify notation, we denote $f(x)+\left\langle 1+x+x^{2}\right\rangle \in F$ by $f(x)$ for all $f(x) \in \mathbb{Z}_{2}[x]$. Thus $F=\{0,1, x, 1+x\}$. Let $R=\operatorname{Mat}_{2}(F)$ and let N be the set of all nonzero nilpotents of R. Then $|X|=(|F|+1)\left(|F|^{2}-1\right)=75$ and $|N|=|F|^{2}-1=15$. Note that under the left (resp. right) regular action on X by G, there are $z_{1}, z_{2}, z_{3}, z_{4}, z_{5} \in N$ such that $X=o_{\ell}\left(z_{1}\right) \cup o_{\ell}\left(z_{2}\right) \cup$ $o_{\ell}\left(z_{3}\right) \cup o_{\ell}\left(z_{4}\right) \cup o_{\ell}\left(z_{5}\right)\left(\right.$ resp. $\left.X=o_{r}\left(z_{1}\right) \cup o_{r}\left(z_{2}\right) \cup o_{r}\left(z_{3}\right) \cup o_{r}\left(z_{4}\right) \cup o_{r}\left(z_{5}\right)\right)$, where $z_{1}=\left[\begin{array}{ll}0 & x \\ 0 & 0\end{array}\right], z_{2}=\left[\begin{array}{ll}0 & 0 \\ x & 0\end{array}\right], z_{3}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], z_{4}=\left[\begin{array}{cc}1 & x \\ 1+x & 1\end{array}\right]$ and $z_{5}=\left[\begin{array}{cc}1 & 1+x \\ x & 1\end{array}\right]$.

We compute the followings by a computer programming (using Mathematica Ver. 6):

$$
\begin{aligned}
& o_{\ell}\left(z_{1}\right) \cap N=\left\{\left[\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1+x \\
0 & 0
\end{array}\right]\right\}, \\
& o_{\ell}\left(z_{2}\right) \cap N=\left\{\left[\begin{array}{ll}
0 & 0 \\
x & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
1+x & 0
\end{array}\right]\right\}, \\
& o_{\ell}\left(z_{3}\right) \cap N=\left\{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
x & x \\
x & x
\end{array}\right],\left[\begin{array}{cc}
1+x & 1+x \\
1+x & 1+x
\end{array}\right]\right\}, \\
& o_{\ell}\left(z_{4}\right) \cap N=\left\{\left[\begin{array}{cc}
1 & x \\
1+x & 1
\end{array}\right],\left[\begin{array}{cc}
x & 1+x \\
1 & x
\end{array}\right],\left[\begin{array}{cc}
1+x & 1 \\
x & 1+x
\end{array}\right]\right\} \\
& o_{\ell}\left(z_{5}\right) \cap N=\left\{\left[\begin{array}{cc}
1 & 1+x \\
x & 1
\end{array}\right],\left[\begin{array}{cc}
x & 1 \\
1+x & x
\end{array}\right],\left[\begin{array}{cc}
1+x & x \\
1 & 1+x
\end{array}\right]\right\}
\end{aligned}
$$

with $o_{\ell}\left(z_{i}\right) \cap N=o_{r}\left(z_{i}\right) \cap N$ for all $i=1, \ldots, 5$.
Also we compute the followings by a computer programming (using Mathematica Ver. 6):

$$
\begin{aligned}
& \begin{array}{l}
o_{\ell}\left(z_{1}\right) \cap o_{r}\left(z_{1}\right)=\left\{\left[\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & 1+x \\
0 & 0
\end{array}\right]\right\}, \\
o_{\ell}\left(z_{1}\right) \cap o_{r}\left(z_{2}\right)=\left\{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & x
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
0 & 1+x
\end{array}\right]\right\},
\end{array} \\
& \text {... } \\
& o_{\ell}\left(z_{5}\right) \cap o_{r}\left(z_{4}\right)=\left\{\left[\begin{array}{cc}
1 & 1+x \\
1+x & x
\end{array}\right],\left[\begin{array}{cc}
x & 1 \\
1 & 1+x
\end{array}\right],\left[\begin{array}{cc}
1+x & x \\
x & 1
\end{array}\right]\right\}, \\
& o_{\ell}\left(z_{5}\right) \cap o_{r}\left(z_{5}\right)=\left\{\left[\begin{array}{cc}
1 & 1+x \\
x & 1
\end{array}\right],\left[\begin{array}{cc}
x & 1 \\
1+x & x
\end{array}\right],\left[\begin{array}{cc}
1+x & x \\
1 & 1+x
\end{array}\right]\right\} .
\end{aligned}
$$

3. Automorphism of graph over $\operatorname{Mat}_{2}(F)$

Lemma 3.1. Let R be a ring with identity and $f: \Gamma(R) \longrightarrow \Gamma(R)$ be a graph automorphism of $\Gamma(R)$. Then for all $x \in X, f\left(a n n_{\ell}^{*}(x)\right)=a n n_{\ell}^{*}(f(x))$ (and $\left.f\left(a n n_{r}^{*}(x)\right)=a n n_{r}^{*}(f(x))\right)$.
Proof. Let $y \in f\left(a n n_{\ell}^{*}(x)\right)$ be arbitrary. Then $y=f(z)$ for some $z \in a n n_{\ell}^{*}(x)$. Since $z x=0$ and f preserves adjacency, $0=f(z) f(x)=y f(x)$ and so $y \in a n n_{\ell}^{*}(f(x))$. Hence $f\left(a n n_{\ell}^{*}(x)\right) \subseteq a n n_{\ell}^{*}(f(x))$. Let $z \in a n n_{\ell}^{*}(f(x))$ be arbitrary. Then $z f(x)=0$. Since f is one-to-one, there exists $z_{1} \in X$ such that $f\left(z_{1}\right)=z$. Then $0=z f(x)=f\left(z_{1}\right) f(x)$. Since f preserves adjacency, $z_{1} x=0$. Since $z_{1} \in \operatorname{ann}_{\ell}^{*}(x)$ and $z=f\left(z_{1}\right) \in f\left(a n n_{\ell}^{*}(x)\right)$, ann $n_{\ell}^{*}(f(x)) \subseteq f\left(a n n_{\ell}^{*}(x)\right)$. By the similar argument, we have $f\left(a n n_{r}^{*}(x)\right)=a n n_{r}^{*}(f(x))$.

Lemma 3.2. Let R be a ring with identity. If ann $n_{\ell}^{*}(x) \neq \emptyset\left(\right.$ resp. ann $\left.n_{r}^{*}(x) \neq \emptyset\right)$ for some $x \in X$, then ann $n_{\ell}^{*}(x)\left(\right.$ resp. ann $\left.n_{r}^{*}(x)\right)$ is a union of orbits under the left (resp. right) regular action on X by G.
Proof. Let $y \in a n n_{\ell}^{*}(x)$ be arbitrary. Then we have $o_{\ell}(y) \subseteq a n n_{\ell}^{*}(x)$, and so $\bigcup_{y \in a n n_{\ell}^{*}(x)} o_{\ell}(y) \subseteq a n n_{\ell}^{*}(x)$. Since $a n n_{\ell}^{*}(x) \neq \emptyset$, it is clear that $a n n_{\ell}^{*}(x) \subseteq$ $\bigcup_{y \in a n n_{\ell}^{*}(x)} o_{\ell}(y)$. Hence $a n n_{\ell}^{*}(x)=\bigcup_{y \in a n n_{\ell}^{*}} o_{\ell}^{*}(y)$, i.e., $a n n_{\ell}^{*}(x)$ is a union of orbits under the left regular action on X by G. By the similar argument, $a n n_{r}^{*}(x)$ is a union of orbits under the right regular action on X by G.

Corollary 3.3. Let R be a finite ring with identity. Then for all $x \in X$, ann $n_{\ell}^{*}(x)\left(\right.$ resp. ann $\left.r_{r}^{*}(x)\right)$ is a union of finite number of orbits under the left (resp. right) regular action on X by G.
Proof. By [8, Proposition 1.2], all $x \in X$ are zero-divisors, and so $a n n_{\ell}^{*}(x) \neq \emptyset$ (resp. $\left.a n n_{r}^{*}(x) \neq \emptyset\right)$ for all $x \in X$. Hence for all $x \in X a n n_{\ell}^{*}(x)\left(\right.$ resp. $\left.a n n_{r}^{*}(x)\right)$
is a union of finite number of orbits under the left (resp. right) regular action on X by G by Lemma 3.2.

The following lemma is well-known in [9].
Lemma 3.4. Let p be a prime number and α, β be positive integers. Then $p^{\alpha}-1$ is a divisor of $p^{\beta}-1$ if and only if α is a divisor of β.

Proof. Refer [9, Lemma 3, p 32].
By using the preceding lemma, we describe $a n n_{\ell}^{*}(x)$ (and $a n n_{r}^{*}(x)$) for all $x \in X$ effectively as follows:
Theorem 3.5. Let $R=\operatorname{Mat}_{2}(F)$ with F a finite field. Then ann $n_{\ell}^{*}(x)=o_{\ell}(y)$ for all $y \in a n n_{\ell}^{*}(x)\left(\right.$ and $a n n_{r}^{*}(x)=o_{r}(z)$ for all $\left.z \in a n n_{r}^{*}(x)\right)$.

Proof. By [7, Lemma 2.7], we have $\left|o_{\ell}(x)\right|=|F|^{2}-1$ for all $x \in X$. Hence we observe that
(1) since $a n n_{\ell}^{*}(x)$ is a union of a finite number of orbits under the left regular action of G on X by Corollary 3.3 and the left regular action of G on X is half-transitive by [7, Theorem 2.4], $\left|o_{\ell}(y)\right|$ is a divisor of $\left|a n n_{\ell}^{*}(x)\right|$ for all $y \in a n n_{\ell}^{*}(x)$;
(2) $\left|a n n_{\ell}(x)\right|$ is a divisor of $|F|$ since $a n n_{\ell}(x)$ is an additive subgroup of F for all $x \in X$.

Let $|F|=p^{\alpha}$ for some prime p and some positive integer α. Then $\left|o_{\ell}(x)\right|=$ $p^{2 \alpha}-1$ and $|R|=p^{4 \alpha}$. Since $\operatorname{ann}_{\ell}(x) \neq R$, we have $\left|a n n_{\ell}(x)\right|=p^{k}$ for some positive integer $k(2 \alpha \leq k<4 \alpha)$ by (2). By (1) and Lemma 3.4, $\left|a n n_{\ell}^{*}(x)\right|=$ $p^{2 \alpha}-1$, and so $\left|a n n_{\ell}^{*}(x)\right|=\left|o_{\ell}(y)\right|$. Since $o_{\ell}(y) \subseteq a n n_{\ell}^{*}(x)$, ann $n_{\ell}^{*}(x)=o_{\ell}(y)$ for all $y \in a n n_{\ell}^{*}(x)$. Similarly, we can show that $\left.a n n_{r}^{*}(x)\right)=o_{r}(z)$ for all $z \in \in a n n_{r}^{*}(x)$.
Theorem 3.6. Let $R=\operatorname{Mat}_{2}(F)$ with F a finite field. Then $\operatorname{Aut}(\Gamma(R)) \neq\{1\}$.
Proof. If $|F|=2$, then F is isomorphic to \mathbb{Z}_{2}, and so $\operatorname{Aut}(\Gamma(R)) \neq\{1\}$ by $[8$, Theorem 3.5]. Suppose that $|F| \geq 3$ and let $N(R)$ be the set of all nonzero nilpotents in R. By Theorem 2.3, $\left|o_{\ell}(x) \cap N(R)\right|=|F|-1 \geq 2$ for each $x \in X$. Take $x_{1}, x_{2} \in o_{\ell}(x) \cap N(R)$ so that $x_{1} \neq x_{2}$. Since x_{1} and x_{2} are nilpotents, we have $\operatorname{ann}_{\ell}^{*}\left(x_{1}\right)=o_{\ell}\left(x_{1}\right)=o_{\ell}\left(x_{2}\right)=a n n_{\ell}^{*}\left(x_{2}\right)$ by Theorem 3.5. Observe that $a n n_{r}^{*}\left(x_{1}\right)=a n n_{r}^{*}\left(x_{2}\right)$. Indeed, if $a \in a n n_{r}^{*}\left(x_{1}\right)$, then $0=x_{1} a=g x_{2} a=0$ for some $g \in G$ since $x_{2} \in o_{\ell}\left(x_{1}\right)$, which implies that $a \in a n n_{r}^{*}\left(x_{2}\right)$, and so $a n n_{r}^{*}\left(x_{1}\right) \subseteq a n n_{r}^{*}\left(x_{2}\right)$. Similarly, we have $a n n_{r}^{*}\left(x_{2}\right) \subseteq a n n_{r}^{*}\left(x_{1}\right)$. By a similar argument, we have $a n n_{r}^{*}\left(x_{1}\right)=o_{r}\left(x_{1}\right)=o_{r}\left(x_{2}\right)=a n n_{r}^{*}\left(x_{2}\right)$ by Theorem 3.5. Since $o_{\ell}\left(x_{1}\right)=o_{\ell}\left(x_{2}\right), x_{2}=g x_{1}$ for some $g \in G$. Let $f=\left(x_{1}, x_{2}\right)$ be a transposition in S_{X}, the symmetric group on X. Since $x_{1} \neq x_{2}, f \neq 1$. We will show that $f \in \operatorname{Aut}(\Gamma(R))$. Let $y z=0$ for some $y, z \in X$. Then we consider the following cases.

Case 1. $y=z=x_{1}$.

Then $f(y) f(z)=x_{2} x_{2}=0$ since $x_{2} \in N(R)$.
Case 2. $y=z=x_{2}$.
Then $f(y) f(z)=x_{1} x_{1}=0$ since $x_{1} \in N(R)$.
Case 3. $y=x_{1}, z=x_{2}$.
Then $f(y) f(z)=x_{2} x_{1}=g x_{1} x_{1}=0$ since $x_{1} \in N(R)$.
Case 4. $y=x_{2}, z=x_{1}$.
Then $f(y) f(z)=x_{1} x_{2}=g^{-1} x_{2} x_{2}=0$ since $x_{2} \in N(R)$.
Case 5. $y, z \neq x_{1}, x_{2}$.
Then $f(y) f(z)=y z=0$.
Consequently, if $y z=0$ for some $y, z \in X$, then $f(y) f(z)=0$, which implies that $f \in \operatorname{Aut}(\Gamma(R))$, and so $\operatorname{Aut}(\Gamma(R)) \neq\{1\}$.

Corollary 3.7. Let $R=\operatorname{Mat}_{2}(F)$ with F a finite field and $N(R)$ be the set of all nonzero nilpotents in R. Consider $X=o_{\ell}\left(a_{1}\right) \cup \cdots \cup o_{\ell}\left(a_{|F|+1}\right)$ as mentioned in Remark 1. For all $j=1, \ldots,|F|+1$, let $s_{j}=(1, j)$ be a transposition in $S_{|F|+1}$, the symmetric group of degree $|F|+1$. If $f_{s_{j}}=\left(x_{1}, x_{j}\right)$ is a transposition in S_{X}, the symmetric group on X, then $f_{s_{j}}$ is a graph automorphism in $\Gamma(R)$.
Proof. By Lemma 3.1 and Theorem 3.5, $f_{s_{j}}\left(o_{\ell}\left(x_{1}\right)\right)=o_{\ell}\left(f_{s_{j}}\left(x_{1}\right)\right)=o_{\ell}\left(x_{j}\right)$. Then $f_{s_{j}}$ is a graph automorphism in $\Gamma(R)$ by the similar argument as given in the proof in Theorem 3.6.

Theorem 3.8. Let $R=\operatorname{Mat}_{2}(F)$ with F a finite field. Then $\operatorname{Aut}(\Gamma(R)) \simeq$ $S_{|F|+1}$.

Proof. Let $N(R)$ be the set of all nonzero nilpotents in R. We choose x_{1}, \ldots, $x_{|F|+1} \in N(R)$ so that $X=o_{\ell}\left(x_{1}\right) \cup \cdots \cup o_{\ell}\left(x_{|F|+1}\right)$ by Remark 1. Let $f \in \operatorname{Aut}(\Gamma(R))$ be arbitrary. By Lemma 3.1 and Theorem 3.5, for each $j=1, \ldots,|F|+1, f\left(o_{\ell}\left(x_{j}\right)\right)=o_{\ell}\left(f\left(x_{j}\right)\right)=o_{\ell}\left(x_{i_{j}}\right)$ for some $i_{j}\left(1 \leq i_{j} \leq|F|+1\right)$. Thus f is determined by the permutation

$$
f_{s}=\left(\begin{array}{ccc}
1 & \cdots & |F|+1 \\
i_{1} & \cdots & i_{|F|+1}
\end{array}\right) \in S_{|F|+1}
$$

Since $S_{|F|+1}$ is generated by the transpositions $s_{2}=(1,2), \ldots, s_{|F|+1}=(1,|F|+$ 1), and each $f_{s_{j}}=\left(x_{1}, x_{j}\right)$, a transposition in S_{X}, is a graph automorphism in $\Gamma(R)$ by Corollary 3.7, f is generated by $f_{s_{1}}, \ldots, f_{S_{|F|+1}}$. Hence the map $\sigma: \operatorname{Aut}(\Gamma(R)) \longrightarrow S_{|F|+1}$ by $\sigma(f)=f_{s}$ is bijective. Also σ is a group homomorphism by observing that for all $s_{i}, s_{j} \in S_{|F|+1}(i, j=2, \ldots,|F|+1)$, $\left(f_{s_{i}} \circ f_{s_{j}}\right)=f_{s_{i} s_{j}}$. Therefore, $\operatorname{Aut}(\Gamma(R)) \simeq S_{p+1}$.

Acknowledgements. The authors thank Prof. J. Park at Pusan National University for reading this paper and kind suggestions. The authors would like to thank the referee for a careful checking of the details and helpful comments about some references for making the paper more readable.

References

[1] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), no. 2, 847-855.
[2] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, Ideal theoretic methods in commutative algebra (Columbia, MO, 1999), 61-72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001
[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[4] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[5] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190-198.
[6] N. J. Fine and I. N. Herstein, The probability that a matrix be nilpotent, Illinois J. Math. 2 (1958), 499-504.
[7] J. Han, Half-transitive group actions in a left Artinian ring, Kyungpook Math. J. 37 (1997), no. 2, 297-303.
[8] _, The zero-divisor graph under group actions in a noncommutative ring, J. Korean Math. Soc. 45 (2008), no. 6, 1647-1659.
[9] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, SpringerVerlag, New York, 1991.
[10] S. P. Redmond, The zero-divisor graph of non-commutative ring, Internat. J. Commutative Rings 1 (2002), no. 4, 2003-211.
[11] , Structure in the zero-divisor graph of a noncommutative ring, Houston J. Math. 30 (2004), no. 2, 345-355.
[12] T. Wu, On directed zero-divisor graphs of finite rings, Discrete Math. 296 (2005), no. 1, 73-86.

Sangwon Park
Department of Mathematics
Dong-A University
Pusan 609-714, Korea
E-mail address: swpark@donga.ac.kr
Juncheol Han
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail address: jchan@pusan.ac.kr

[^0]: Received September 25, 2009; Revised May 20, 2010.
 2010 Mathematics Subject Classification. Primary 05C20; Secondary 16W22.
 Key words and phrases. zero-divisor graph, left (resp. right) regular action, orbit, graph automorphisms group.

 This study was supported by research funds from Dong-A University.

