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THE GROUP OF GRAPH AUTOMORPHISMS

OVER A MATRIX RING

Sangwon Park and Juncheol Han

Abstract. Let R = Mat2(F ) be the ring of all 2 by 2 matrices over a

finite field F , X the set of all nonzero, nonunits of R and G the group
of all units of R. After investigating some properties of orbits under
the left (and right) regular action on X by G, we show that the graph
automorphisms group of Γ(R) (the zero-divisor graph of R) is isomorphic

to the symmetric group S|F |+1 of degree |F |+ 1.

1. Introduction

The zero-divisor graph of a commutative ring has been studied extensitively
by Akbari, Anderson, Frazier, Lauve, Livinston and Mohammadian in [1, 2, 3]
since its concept had been introduced by Beck in [4]. Recently, the zero-divisor
graph of a noncommutative ring (resp. a semigroup) has also been studied by
Redmond and Wu (resp. F. DeMeyer and L. DeMeyer) in [10, 11, 12] (resp.
[5]). The zero-divisor graph has been used to study the algebraic structures
of rings via their zero-divisors. In this paper, the group of the zero-divisor
graph automorphisms over a matrix ring over a finite field is investigated by
considering some group actions.

For a ring R with identity, let Z(R) be the set of all left or right zero-
divisors of R, Γ(R) be the zero-divisor graph of R consisting of all vertices in
Z(R)∗ = Z(R) \ {0}, the set of all nonzero left or right zero-divisors of R, and
edges x −→ y, which means that xy = 0 for x, y ∈ Z(R)∗.

For a ring R with identity, let X(R) (simply, denoted by X) be the set of all
nonzero, nonunits of R, G(R) (simply, denoted by G) be the group of all units
of R. In this paper, we will consider some group actions on X by G given by
(g, x) −→ gx (resp. (g, x) −→ xg−1) from G × X to X, called the left (resp.
right) regular action. If ϕ : G×X −→ X is the left (resp. right) regular action,
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then for each x ∈ X, we define the orbit of x by oℓ(x) = {ϕ(g, x) = gx : g ∈ G}
(resp. or(x) = {ϕ(g, x) = xg−1 : g ∈ G}).

In Section 2, we will show that if R = Mat2(F ) with F a finite field, then (1)
the number of orbits under the left (resp. right) regular action on X by G is
|F |+1; (2) if N is the set of all nonzero nilpotents in R, then |N | = |F |2−1 and
oℓ(x)∩or(x) = oℓ(x)∩N = or(x)∩N for all x ∈ N ; (3) |oℓ(x)∩or(y)| = |F |−1
for all x, y ∈ X.

We recall that for all x ∈ X the set annℓ(x) = {y ∈ X : yx = 0} (resp.
annr(x) = {z ∈ X : xz = 0}) is called a left (resp. right) annihilator of x. Let
ann∗

ℓ (x) = annℓ(x) \ {0} (resp. ann∗
r(x) = annr(x) \ {0}).

A graph automorphism f of a graph Γ(R) (where R denotes a ring) is defined
to be a bijection f : Γ(R) −→ Γ(R) which preserves adjacency. Note that the
set Aut(Γ(R)) of all graph automorphisms of Γ(R) forms a group under the
usual composition of functions. In [3], Anderson and Livingston have shown
that Aut(Γ(Zn) is a (finite) direct product of symmetric groups for n ≥ 4 a
nonprime integer. For the case of noncommutative rings, it was shown by [8]
that when R = Mat2(Zp) (p is a prime), Aut(Γ(R)) ≃ Sp+1, the symmetric
group of degree p+1. In Section 3, for the continuation of these investigation,
we prove that Aut(Γ(R)) ≃ S|F |+1 when R = Mat2(F ) with F a finite field.

2. Orbits under the regular action in Mat2(F )

Recall that G is transitive on X (or G acts transitively on X) under the left
(resp. right) regular action onX byG if there is an x ∈ X with oℓ(x) = X (resp.
or(x) = X) and the left (resp. right) regular action of G on X is said to be
half-transitive if G is transitive on X or if oℓ(x) (resp. or(x)) is a finite set with
|oℓ(x)| > 1 (resp. |or(x)| > 1) and |oℓ(x)| = |oℓ(y)| (resp. |or(x)| = |or(y)|)
for all x and y ∈ X. In [7, Theorem 2.4 and Lemma 2.7], it was shown that if
R = Mat2(F ) with F a finite field, then G is half-transitive on X by the left
(resp. right) regular action and |oℓ(x)| = |F |2 − 1 (resp. |or(x)| = |F |2 − 1) for
all x ∈ X.

Lemma 2.1. Let R = Mat2(F ) with F a finite field. Then the number of
orbits under the left (resp. right) regular action on X by G is |F |+ 1.

Proof. Let µ be the number of orbits under the left (resp. right) regular action
on X by G. Note that |G| = (|F |2− 1)(|F |2−|F |). Thus |X| = |R|− |G|− 1 =
|F |4 − (|F |2 − 1)(|F |2 − |F |)− 1 = (|F |+ 1)(|F |2 − 1). Since the cardinality of
any orbit under the left (resp. right) regular action on X by G is |F |2 − 1 by
[7, Lemma 2.7], µ = |X|/(|F |2 − 1) = |F |+ 1. □

The following theorem was shown in [6].

Theorem 2.2. The probability that n by n matrix over GF (pα) be nilpotent is
pαn

Proof. Refer [6, Theorem 1]. □
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By Theorem 2.2, we note that the number of all 2 by 2 nonzero nilpotent
matrices over a finite field F is equal to |F |2 − 1.

Theorem 2.3. Let R = Mat2(R) with F a finite field and N be the set of all
nonzero nilpotents in R. Then under the left (resp. right) regular action on X
by G, we have the following.

(i) |oℓ(x) ∩N | = |F | − 1;
(ii) oℓ(x) ∩N = or(x) ∩N = oℓ(x) ∩ or(x) for each x ∈ N .

Proof. (i) Consider the set Sx = {(αI)x|α ∈ F \ {0}} for each x ∈ N where
I is the identity matrix in R. Since (αI)x = x(αI) for all (αI)x ∈ S, Sx ⊆
oℓ(x) ∩N, or(x) ∩N . Note that for all α, β ∈ F \ {0}(α ̸= β), (αI)x ̸= (βI)x,
and so |Sx| = |F |−1. Next, we will show that oℓ(x)∩N ⊆ Sx. Let y ∈ oℓ(x)∩N
be arbitrary. Let

x =

[
−αb b
−α2b αb

]
∈ N for some b(̸= 0), α ∈ F.

Since y ∈ oℓ(x), y = gx for some g ∈ G. Let g = [ p q
r s ] ∈ G. Then

y =

[
p q
r s

] [
−αb b
−α2b αb

]
=

[
−(p+ qα)αb (p+ qα)b
−(r + sα)αb (r + sα)b

]
∈ oℓ(x).

Since y ∈ N , we have (p+ qα)α = (r+ sα)( ̸= 0) by the proof of Lemma 2.2,
and so

y =

[
p+ qα 0

0 p+ qα

] [
−αb b
−α2b αb

]
= ((p+ qα)I)x ∈ Sx.

Therefore, oℓ(x)∩N ⊆ Sx, and consequently we have Sx = oℓ(x)∩N . By the
similar argument, we have also Sx = or(x) ∩N . Hence oℓ(x) ∩N = or(x) ∩N
and |oℓ(x) ∩N | = |or(x) ∩N | = |Sx| = |F | − 1 for each x ∈ N .

(ii) By the proof of (i), we have that oℓ(x)∩N = or(x)∩N for each x ∈ N .
Note that Sx = oℓ(x) ∩N(= or(x) ∩N) ⊆ oℓ(x) ∩ or(x) for each x ∈ N where
Sx is the set considered in the proof of (i). Let y ∈ oℓ(x) ∩ or(x) be arbitrary
and let

x =

[
−αβ β
−α2β αβ

]
∈ N (∀α ∈ F, ∀β ∈ F \ {0})

be arbitrary. Then there exist g =
[
a b
c d

]
, h = [ p q

r s ] ∈ G such that y = gx = xh.
Thus

(1) gx =

[
a b
c d

] [
−αβ β
−α2β αβ

]
=

[
−αβ(a+ bα) β(a+ bα)
−αβ(c+ dα) β(c+ dα)

]
,

(2) xh =

[
−αβ β
−α2β αβ

] [
p q
r s

]
=

[
−β(αp− r) −β(αq − s)
−αβ(αp− r) −αβ(αq − s)

]
.
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Let γ = −β(αq− s) ( = (1,2) - entry of y = xh). From (1) and (2), we have
that

y =

[
−αγ γ
−α2γ αγ

]
∈ N,

and so oℓ(x)∩or(x) ⊆ oℓ(x)∩N for each x ∈ N . Hence oℓ(x)∩or(x) = oℓ(x)∩N
for each x ∈ N . Similarly, we have oℓ(x)∩or(x) = or(x)∩N for each x ∈ N . □

Remark 1. LetR = Mat2(R) with F a finite field andN be the set of all nonzero
nilpotents in R. Choose x1 ∈ N so that Sx1

= {(αI)x1|α ∈ F \ {0}} ⊂ N .
By Theorem 2.3, oℓ(x1) ∩ N = Sx1 . Since |N | = |F |2 − 1 by Theorem 2.2
and |Sx1

| = |F | − 1 by Theorem 2.3, we can choose x2 ∈ N \ Sx1
. Then

Sx1 = oℓ(x1)∩N and Sx2 = oℓ(x2)∩N are disjoint. Continuing in this way, we
can choose x1, x2, . . . , x|F |+1 ∈ N so that xi+1 ∈ N(R) \ (Sx1 ∪Sx2 ∪ · · · ∪Sxi)
for all i = 1, . . . , |F |. Then we have

N = Sx1 ∪ Sx2 ∪ · · · ∪ Sx|F |+1

= [oℓ(x1) ∩N ] ∪ [oℓ(x2) ∪N ] ∪ · · · ∪ [oℓ(x|F |+1) ∩N ],

which is a disjoint union of N . Observe that oℓ(x1), oℓ(x2), . . . , oℓ(x|F |+1) are
disjoint (equivalently, they are all distinct). Indeed, assume that there exist
oℓ(xi) and oℓ(xj) for some i, j(i < j, i ̸= j) such that oℓ(xi) = oℓ(xj). Then
xj ∈ oℓ(xi) ∩ N = Sxi , and so Sxj ⊆ Sxi , which is a contradiction. Since the
number of orbits under the left regular action on X by G is |F |+1 by Lemma
2.1, X = oℓ(x1) ∪ oℓ(x2) ∪ · · · ∪ oℓ(x|F |+1). By the similar argument, we have
X = or(x1) ∪ or(x2) ∪ · · · ∪ or(x|F |+1).

Lemma 2.4. Let R = Mat2(R) with F a finite field and N be the set of all
nonzero nilpotents in R. Then for all x, y ∈ N , y = gxg−1 for some g ∈ G.

Proof. Consider a group action on X by G given by (g, x) −→ gxg−1 from
G×X to X, called conjugation.

Take a = [ 0 1
0 0 ] ∈ N . Let oc(a) = {gag−1|g ∈ G} be the orbit of a under

conjugation, and stabc(a) = {g ∈ G|ga = ag} be the stabilizer of a under
conjugation. Then we have

stabc(a) =

{[
s t
0 s

]
∈ G|s(̸= 0), t ∈ F

}
by easy computation, and so |stabc(a)| = (|F | − 1)|F |. Hence

|oc(a)| =
|G|

|stabc(a)|
=

(|F |2 − |F |)(|F |2 − 1)

(|F | − 1)|F |
= |F |2 − 1 = |N |.

Since oc(a) ⊆ N , oc(a) = N . Therefore we have the result. □

Theorem 2.5. Let R = Mat2(R) with F a finite field and N be the set of all
nonzero nilpotents in R. Then under the left (resp. right) regular action on X
by G, |oℓ(x) ∩ or(y)| = |F | − 1 for each x, y ∈ X.
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Proof. First, we will show that oℓ(x) ∩ or(y) ̸= ∅ for each x, y ∈ X. By
Remark 1, we can choose x1, . . . , x|F |+1 (resp. y1, . . . , y|F |+1) in N so that
X = oℓ(x1)∪· · ·∪oℓ(x|F |+1) (resp. X = or(y1)∪· · ·∪or(y|F |+1). Thus oℓ(x) =
oℓ(xi) and or(y) = or(yj) for some xi, yj ∈ N . Observe that oℓ(xi)∩or(yj) ̸= ∅.
Indeed, since xi and yj are nonzero nilpotents in R, yj = gxig

−1 for some g ∈ G
by Lemma 2.4. Hence oℓ(xi)∩ or(yj) = oℓ(xi)∩ or(gxig

−1) = oℓ(gxi)∩ or(gxi)
contains an element gxi ∈ X, and so oℓ(x) ∩ or(y) = oℓ(xi) ∩ or(yj) ̸= ∅.

Next, we will show that |oℓ(x) ∩ or(y)| = |F | − 1 for each x, y ∈ X. Since
oℓ(x) ∩ or(y) ̸= ∅ for each x, y ∈ X, we choose z ∈ oℓ(x) ∩ or(y), and then
oℓ(z) ∩ or(z) = oℓ(x) ∩ or(y). Consider a set Sz = {(αI)z|α ∈ F \ {0}}
where I is the identity matrix in R. Since (αI)z = z(αI) for all (αI)z ∈ S,
Sz ⊆ oℓ(x)∩or(x). Note that for all α, β ∈ F \{0}(α ̸= β), (αI)z ̸= (βI)z, and
so |Sz| = |F | − 1. Thus |oℓ(x) ∩ or(y)| = |oℓ(z) ∩ or(z)| ≥ |Sz| = |F | − 1. Since
X = oℓ(x1)∪· · ·∪oℓ(x|F |+1), we have or(y) = X∩or(y) = [oℓ(x1)∩or(y)]∪· · ·∪
[oℓ(x|F |+1) ∩ or(y)]. Clearly, oℓ(x1) ∩ or(y), . . . , oℓ(x|F |+1) ∩ or(y) are disjoint,

and thus |or(y)| = |F |2 − 1 = |oℓ(x1) ∩ or(y)| + · · · + |oℓ(x|F |+1) ∩ or(y)| ≥
(|F | − 1)(|F | + 1) = |F |2 − 1, which implies that |oℓ(x1) ∩ or(y)| = · · · =
|oℓ(x|F |+1) ∩ or(y)| = |F | + 1. Since oℓ(x) = oℓ(xi) for some xi ∈ N , we have
that |oℓ(x) ∩ or(y)| = |oℓ(xi) ∩ or(y)| = |F | − 1 for each x, y ∈ X. □

The following example illustrates Theorem 2.3 and Theorem 2.5 for a certain
finite field.

Example 1. Consider F = Z2[x]/⟨1+x+x2⟩, a field of order 4 where Z2 is the
Galois field of order 2. To simplify notation, we denote f(x)+⟨1+x+x2⟩ ∈ F by
f(x) for all f(x) ∈ Z2[x]. Thus F = {0, 1, x, 1 + x}. Let R = Mat2(F ) and let
N be the set of all nonzero nilpotents of R. Then |X| = (|F |+1)(|F |2−1) = 75
and |N | = |F |2 − 1 = 15. Note that under the left (resp. right) regular action
on X by G, there are z1, z2, z3, z4, z5 ∈ N such that X = oℓ(z1) ∪ oℓ(z2) ∪
oℓ(z3) ∪ oℓ(z4) ∪ oℓ(z5) (resp. X = or(z1) ∪ or(z2) ∪ or(z3) ∪ or(z4) ∪ or(z5)),
where z1 = [ 0 x

0 0 ], z2 = [ 0 0
x 0 ], z3 = [ 1 1

1 1 ], z4 =
[

1 x
1+x 1

]
and z5 =

[
1 1+x
x 1

]
.

We compute the followings by a computer programming (using Mathematica
Ver. 6):

oℓ(z1) ∩N =

{[
0 x
0 0

]
,

[
0 1
0 0

]
,

[
0 1 + x
0 0

]}
,

oℓ(z2) ∩N =

{[
0 0
x 0

]
,

[
0 0
1 0

]
,

[
0 0

1 + x 0

]}
,

oℓ(z3) ∩N =

{[
1 1
1 1

]
,

[
x x
x x

]
,

[
1 + x 1 + x
1 + x 1 + x

]}
,

oℓ(z4) ∩N =

{[
1 x

1 + x 1

]
,

[
x 1 + x
1 x

]
,

[
1 + x 1
x 1 + x

]}
,

oℓ(z5) ∩N =

{[
1 1 + x
x 1

]
,

[
x 1

1 + x x

]
,

[
1 + x x
1 1 + x

]}
,
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with oℓ(zi) ∩N = or(zi) ∩N for all i = 1, . . . , 5.

Also we compute the followings by a computer programming (using Mathe-
matica Ver. 6):

oℓ(z1) ∩ or(z1) =

{[
0 x
0 0

]
,

[
0 1
0 0

]
,

[
0 1 + x
0 0

]}
,

oℓ(z1) ∩ or(z2) =

{[
0 0
0 1

]
,

[
0 0
0 x

]
,

[
0 0
0 1 + x

]}
,

· · ·
· · ·
· · ·

oℓ(z5) ∩ or(z4) =

{[
1 1 + x

1 + x x

]
,

[
x 1
1 1 + x

]
,

[
1 + x x
x 1

]}
,

oℓ(z5) ∩ or(z5) =

{[
1 1 + x
x 1

]
,

[
x 1

1 + x x

]
,

[
1 + x x
1 1 + x

]}
.

3. Automorphism of graph over Mat2(F )

Lemma 3.1. Let R be a ring with identity and f : Γ(R) −→ Γ(R) be a graph
automorphism of Γ(R). Then for all x ∈ X, f(ann∗

ℓ (x)) = ann∗
ℓ (f(x)) (and

f(ann∗
r(x)) = ann∗

r(f(x))).

Proof. Let y ∈ f(ann∗
ℓ (x)) be arbitrary. Then y = f(z) for some z ∈ ann∗

ℓ (x).
Since zx = 0 and f preserves adjacency, 0 = f(z)f(x) = yf(x) and so
y ∈ ann∗

ℓ (f(x)). Hence f(ann∗
ℓ (x)) ⊆ ann∗

ℓ (f(x)). Let z ∈ ann∗
ℓ (f(x)) be

arbitrary. Then zf(x) = 0. Since f is one-to-one, there exists z1 ∈ X such that
f(z1) = z. Then 0 = zf(x) = f(z1)f(x). Since f preserves adjacency, z1x = 0.
Since z1 ∈ ann∗

ℓ (x) and z = f(z1) ∈ f(ann∗
ℓ (x)), ann

∗
ℓ (f(x)) ⊆ f(ann∗

ℓ (x)).
By the similar argument, we have f(ann∗

r(x)) = ann∗
r(f(x)). □

Lemma 3.2. Let R be a ring with identity. If ann∗
ℓ (x) ̸= ∅ (resp. ann∗

r(x) ̸= ∅)
for some x ∈ X, then ann∗

ℓ (x) (resp. ann∗
r(x)) is a union of orbits under the

left (resp. right) regular action on X by G.

Proof. Let y ∈ ann∗
ℓ (x) be arbitrary. Then we have oℓ(y) ⊆ ann∗

ℓ (x), and so∪
y∈ann∗

ℓ (x)
oℓ(y) ⊆ ann∗

ℓ (x). Since ann∗
ℓ (x) ̸= ∅, it is clear that ann∗

ℓ (x) ⊆∪
y∈ann∗

ℓ (x)
oℓ(y). Hence ann∗

ℓ (x) =
∪

y∈ann∗
ℓ
o∗ℓ (y), i.e., ann∗

ℓ (x) is a union

of orbits under the left regular action on X by G. By the similar argument,
ann∗

r(x) is a union of orbits under the right regular action on X by G. □
Corollary 3.3. Let R be a finite ring with identity. Then for all x ∈ X,
ann∗

ℓ (x) (resp. ann∗
r(x)) is a union of finite number of orbits under the left

(resp. right) regular action on X by G.

Proof. By [8, Proposition 1.2], all x ∈ X are zero-divisors, and so ann∗
ℓ (x) ̸= ∅

(resp. ann∗
r(x) ̸= ∅) for all x ∈ X. Hence for all x ∈ X ann∗

ℓ (x) (resp. ann
∗
r(x))
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is a union of finite number of orbits under the left (resp. right) regular action
on X by G by Lemma 3.2. □

The following lemma is well-known in [9].

Lemma 3.4. Let p be a prime number and α, β be positive integers. Then
pα − 1 is a divisor of pβ − 1 if and only if α is a divisor of β.

Proof. Refer [9, Lemma 3, p 32]. □

By using the preceding lemma, we describe ann∗
ℓ (x) (and ann∗

r(x)) for all
x ∈ X effectively as follows:

Theorem 3.5. Let R = Mat2(F ) with F a finite field. Then ann∗
ℓ (x) = oℓ(y)

for all y ∈ ann∗
ℓ (x) (and ann∗

r(x) = or(z) for all z ∈ ann∗
r(x)).

Proof. By [7, Lemma 2.7], we have |oℓ(x)| = |F |2 − 1 for all x ∈ X. Hence we
observe that

(1) since ann∗
ℓ (x) is a union of a finite number of orbits under the left

regular action of G on X by Corollary 3.3 and the left regular action of G on
X is half-transitive by [7, Theorem 2.4], |oℓ(y)| is a divisor of |ann∗

ℓ (x)| for all
y ∈ ann∗

ℓ (x);
(2) |annℓ(x)| is a divisor of |F | since annℓ(x) is an additive subgroup of F

for all x ∈ X.

Let |F | = pα for some prime p and some positive integer α. Then |oℓ(x)| =
p2α − 1 and |R| = p4α. Since annℓ(x) ̸= R, we have |annℓ(x)| = pk for some
positive integer k (2α ≤ k < 4α) by (2). By (1) and Lemma 3.4, |ann∗

ℓ (x)| =
p2α − 1, and so |ann∗

ℓ (x)| = |oℓ(y)|. Since oℓ(y) ⊆ ann∗
ℓ (x), ann

∗
ℓ (x) = oℓ(y)

for all y ∈ ann∗
ℓ (x). Similarly, we can show that ann∗

r(x)) = or(z) for all
z ∈∈ ann∗

r(x). □

Theorem 3.6. Let R = Mat2(F ) with F a finite field. Then Aut(Γ(R)) ̸= {1}.

Proof. If |F | = 2, then F is isomorphic to Z2, and so Aut(Γ(R)) ̸= {1} by [8,
Theorem 3.5]. Suppose that |F | ≥ 3 and let N(R) be the set of all nonzero
nilpotents in R. By Theorem 2.3, |oℓ(x)∩N(R)| = |F |− 1 ≥ 2 for each x ∈ X.
Take x1, x2 ∈ oℓ(x) ∩ N(R) so that x1 ̸= x2. Since x1 and x2 are nilpotents,
we have ann∗

ℓ (x1) = oℓ(x1) = oℓ(x2) = ann∗
ℓ (x2) by Theorem 3.5. Observe

that ann∗
r(x1) = ann∗

r(x2). Indeed, if a ∈ ann∗
r(x1), then 0 = x1a = gx2a = 0

for some g ∈ G since x2 ∈ oℓ(x1), which implies that a ∈ ann∗
r(x2), and so

ann∗
r(x1) ⊆ ann∗

r(x2). Similarly, we have ann∗
r(x2) ⊆ ann∗

r(x1). By a similar
argument, we have ann∗

r(x1) = or(x1) = or(x2) = ann∗
r(x2) by Theorem 3.5.

Since oℓ(x1) = oℓ(x2), x2 = gx1 for some g ∈ G. Let f = (x1, x2) be a
transposition in SX , the symmetric group on X. Since x1 ̸= x2, f ̸= 1. We will
show that f ∈ Aut(Γ(R)). Let yz = 0 for some y, z ∈ X. Then we consider
the following cases.

Case 1. y = z = x1.
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Then f(y)f(z) = x2x2 = 0 since x2 ∈ N(R).

Case 2. y = z = x2.
Then f(y)f(z) = x1x1 = 0 since x1 ∈ N(R).

Case 3. y = x1, z = x2.
Then f(y)f(z) = x2x1 = gx1x1 = 0 since x1 ∈ N(R).

Case 4. y = x2, z = x1.
Then f(y)f(z) = x1x2 = g−1x2x2 = 0 since x2 ∈ N(R).

Case 5. y, z ̸= x1, x2.
Then f(y)f(z) = yz = 0.

Consequently, if yz = 0 for some y, z ∈ X, then f(y)f(z) = 0, which implies
that f ∈ Aut(Γ(R)), and so Aut(Γ(R)) ̸= {1}. □

Corollary 3.7. Let R = Mat2(F ) with F a finite field and N(R) be the set of
all nonzero nilpotents in R. Consider X = oℓ(a1)∪· · ·∪oℓ(a|F |+1) as mentioned
in Remark 1. For all j = 1, . . . , |F | + 1, let sj = (1, j) be a transposition in
S|F |+1, the symmetric group of degree |F |+1. If fsj = (x1, xj) is a transposition
in SX , the symmetric group on X, then fsj is a graph automorphism in Γ(R).

Proof. By Lemma 3.1 and Theorem 3.5, fsj (oℓ(x1)) = oℓ(fsj (x1)) = oℓ(xj).
Then fsj is a graph automorphism in Γ(R) by the similar argument as given
in the proof in Theorem 3.6. □

Theorem 3.8. Let R = Mat2(F ) with F a finite field. Then Aut(Γ(R)) ≃
S|F |+1.

Proof. Let N(R) be the set of all nonzero nilpotents in R. We choose x1, . . .,
x|F |+1 ∈ N(R) so that X = oℓ(x1) ∪ · · · ∪ oℓ(x|F |+1) by Remark 1. Let
f ∈ Aut(Γ(R)) be arbitrary. By Lemma 3.1 and Theorem 3.5, for each
j = 1, . . . , |F |+1, f(oℓ(xj)) = oℓ(f(xj)) = oℓ(xij ) for some ij (1 ≤ ij ≤ |F |+1).
Thus f is determined by the permutation

fs =

(
1 · · · |F |+ 1
i1 · · · i|F |+1

)
∈ S|F |+1.

Since S|F |+1 is generated by the transpositions s2 = (1, 2), . . . , s|F |+1 = (1, |F |+
1), and each fsj = (x1, xj), a transposition in SX , is a graph automorphism
in Γ(R) by Corollary 3.7, f is generated by fs1 , . . . , fs|F |+1

. Hence the map

σ : Aut(Γ(R)) −→ S|F |+1 by σ(f) = fs is bijective. Also σ is a group ho-
momorphism by observing that for all si, sj ∈ S|F |+1 (i, j = 2, . . . , |F | + 1),
(fsi ◦ fsj ) = fsisj . Therefore, Aut(Γ(R)) ≃ Sp+1. □
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