• Title/Summary/Keyword: granular sludge

Search Result 99, Processing Time 0.033 seconds

Aerobic Granules for the Effective Oxidation of Ammonium Nitrogen

  • Lee, Hyo Lee;Ryu, Jae Hun;Lee, Youn Pyo;Kim, Tae Seok;Kim, Min Kyeong;Ahn, Do Thi Ngoc;Ahn, Dae Hee
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • In this study, aerobic granules were applied to a lab-scale aerobic granule sludge airlift reactor (AGSAR) and the ammonium nitrogen oxidation performance was evaluated at different ammonium nitrogen loading rate (NLR). At least 99% of the initial ammonium nitrogen was oxidized at an NLR of 0.27 and 0.53 kg $NH_4{^+}-N/m^3{\cdot}day$, for both aerobic granules (control), and nitrifying aerobic granules (NAGs). The ammonium nitrogen oxidation deteriorated, when the NLR was increased to 1.07 kg $NH_4{^+}-N/m^3{\cdot}day$. The NAGs were characterized by complete nitrification, while partial nitrification was observed in the control.

Copper ion Toxicity Causes Discrepancy between Acetate Degradation and Methane Production in Granular Sludge

  • Bae, Jin-Woo;Rhee, Sung-Keun;Jang, Am;Kim, In-S.;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.849-853
    • /
    • 2002
  • Metal ions have an adverse effect on anaerobic digestion. In an acetate degradation test of upflow of anaerobic sludge blanket granules with $Cu^{2+}$, not all of the acetate that disappeared was stoichiometrically converted to methane. In the presence of 400 mg/g-VSS (volatile suspended solids) $Cu^{2+}$, only 26% of the acetate consumed was converted to methane. To study acetate conversion by other anaerobic microorganisms, sulfate and nitrate reductions were investigated in the presence of $Cu^{2+}$ Sulfate and nitrate reductions exhibited more resistance to $Cu^{2+}$than methanogenesis, and the granules reduced 2.2 mM and 5.4 mM of nitrate and sulfate, respectively, in the presence of 400 mg/g-VSS copper ion. However, the acetate degraded by sulfate and nitrate reductions was only 24% of the missing acetate that could have been stoichiometrically converted to $CO_2$. Accordingly, 76% of the acetate consumed appeared to have been converted to other unknown compounds.

Behaviors of Pollutants and Microorganisms in an Anaerobic Digestion of Propionate Containing High Ammonia Nitrogen Level (고농도 암모니아성 질소를 함유한 프로피온산의 혐기성 분해시 오염물질 및 미생물 거동)

  • Lee, Chae-Young;Kim, Dae-Sung;Ahn, Won-Sik;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.126-137
    • /
    • 2006
  • Behaviors of simple organic compound and granular sludge in an upflow anaerobic sludge blanket (UASB) reactor treating propionate at high ammonia nitrogen levels were investigated for 12 months. The UASB reactor achieved about 80% removal of chemical oxygen demand (COD) at ammonia nitrogen concentration up to 6000 mg-N/L. At higher concentration of ammonia nitrogen, the propionate in the effluent increased whereas the acetate was very low. At ammonia nitrogen concentration of 8000 mg-N/L, the volatile suspended solids (VSS) increased sharply due probably to the decrease of the content of extracellular polymer (ECP) although methane production was very low. The specific methanogenic activity (SMA) using formate, acetate, and propionate as substrate to granules decreased as ammonia nitrogen concentration increased. The ammonia nitrogen concentration $I^{50}$, causing 50% inhibition of SMA were 2666, 4778 and 5572 mg-N/L, respectively. The kinetic coefficients of ammonia inhibition using formate, acetate, and propionate as substrate were 3.279, 0.999 and 0.609, respectively. The SMA using formate was severely affected by ammonia nitrogen than those using acetate and propionate. This result indicated that the hydrogenotrophic methanogens was most affected by ammonia nitrogen. Granules were mainly composed of microcolonies of methanothrix-like bacteria resembling bamboo-shape, and several other microcolonies including propionate degrader with juxtapositioned syntrophic associations between the hydrogen-producing acetogens and hydrogen-consuming methanogens.

  • PDF

Development of High-rate Nitrogen Removal Process Using Submerged MBR Packed with Granular Sulfur of Pilot Scale Plant (Pilot Scale Plant의 황 충진 MBR을 이용한 고효율의 질소제거 공법 개발)

  • Mun, Jin-Yeong;Hwang, Yong-U;Jo, Hyeon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, a process combined biofiltration with sulfur-utilizing autotrophic denitrification and membrane separation was proposed to examine the efficiency of nitrogen removal. As an experimental device, hollow-fiber module was installed in the center of reactor to generate the flux forward sulfur layer in the cylinder packed with granular sulfur. In addition, a simple module was installed in activated sludge aeration tank which inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. The experiment for developing new MBR process was carried out for three years totally. As the results of first two-year experiment, successful nitrogen removal performance was revealed with lab-scale test and pliot scale plant using artificial wastewater and actual plating wastewater. In this year, pilot scale test using actual domestic wastewater was performed to prove field applicability. As the results, high-rate nitrogen removal performance was confirmed with about 0.19 kg ${NO_3}^--N/m^3$ day of rate. Also significant fouling and pressure increase were not found during the experiment. And, the production ratio of sulfate and the consumption ratio of alkalinity showed a slightly higher value about 311 mg ${SO_4}^{2-}/L$ and 369 mg $CaCO_3$/L, respectively. In conclusion, the developed MBR process can be utilized as an alternative for retrofiting existing wastewater plants as well as new construction of advanced sewage wastewater treatment plants, with cost-effective merit.

Lithoautotrophic Nitrogen Removal from Ammonium-rich Wastewater in Aerobic Upflow Sludge Bed(AUSB) Reactor (호기성 상향류 슬러지상 반응조를 이용한 고농도 암모늄 함유폐수의 독립영양 질소제거)

  • Ahn, Young-Ho;Choi, Hoon-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.852-859
    • /
    • 2006
  • The novel microbial process such as Anammox(anaerobic ammonium oxidation) and Canon(completely autotrophic nitrogen removal over nitrite) processes is promising biotechnology to remove nitrogen from ammonium-rich wastewater like anaerobic sludge digester liquid. In this research, a new Canon-type nitrogen removal process adopting upflow granular sludge bed type configuration was investigated on its feasibility and process performance, using synthetic wastewater and sludge digester liquids. Air as an oxygen source was provided in an external aeration chamber with flow recirculation. In the first experiment using the synthetic wastewater(up to 110 mg $NH_4$-N $L^{-1}$), the ammonium removal was about 95%(92% for T-N) at effective hydraulic retention time(HRT) for 3.8 days. In the second experiment using the sludge digester liquids($438{\pm}26$ mg $NH_4$-N $L^{-1}$), the total nitrogen removal was $94{\pm}1.7%$ at HRT for 5.4 days and $76{\pm}1.5%$ at HRT for 3.8 days, respectively. Little nitrite and nitrate were observed in the effluent of both experiments. The process revealed quite a lower oxygen($0.29{\sim}0.59$ g $O_2$ $g^{-1}N$) and less alkalinity($3.1{\sim}3.4$ g $CaCO_3$ $g^{-1}N$) consumption as compared to other new technology in microbial nitrogen removal. The process also offers the economical compact reactor configuration with excellent biomass retention, resulting in lower cost for investment and maintenance.

A Comparison Study of Alum Sludge and Ferric Hydroxide Based Adsorbents for Arsenic Adsorption from Mine Water (알럼 및 철수산화물 흡착제의 광산배수 내 비소 흡착성능 비교연구)

  • Choi, Kung-Won;Park, Seong-Sook;Kang, Chan-Ung;Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.689-698
    • /
    • 2021
  • Since the mine reclamation scheme was implemented from 2007 in Korea, various remediation programs have been decontaminated the pollution associated with mining and 254 mines were managed to reclamation from 2011 to 2015. However, as the total amount of contaminated mine drainage has been increased due to the discovery of potential hazards and contaminated zone, more efficient and economical treatment technology is required. Therefore, in this study, the adsorption properties of arsenic was evaluated according to the adsorbents which were derived from water treatment sludge(Alum based adsorbent, ABA-500) and granular ferric hydroxide(GFH), already commercialized. The alum sludge and GFH adsorbents consisted of aluminum, silica materials and amorphous iron hydroxide, respectively. The point of zero charge of ABA-500 and GFH were 5.27 and 6.72, respectively. The result of the analysis of BET revealed that the specific surface area of GFH(257 m2·g-1) was larger than ABA-500(126~136 m2·g-1) and all the adsorbents were mesoporous materials inferred from N2 adsorption-desorption isotherm. The adsorption capacity of adsorbents was compared with the batch experiments that were performed at different reaction times, pH, temperature and initial concentrations of arsenic. As a result of kinetic study, it was confirmed that arsenic was adsorbed rapidly in the order of GFH, ABA-500(granule) and ABA-500(3mm). The adsorption kinetics were fitted to the pseudo-second-order kinetic model for all three adsorbents. The amount of adsorbed arsenic was increased with low pH and high temperature regardless of adsorbents. When the adsorbents reacted at different initial concentrations of arsenic in an hour, ABA-500(granule) and GFH could remove the arsenic below the standard of drinking water if the concentration was below 0.2 mg·g-1 and 1 mg·g-1, respectively. The results suggested that the ABA-500(granule), a low-cost adsorbent, had the potential to field application at low contaminated mine drainage.

Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket) (UASB를 이용한 음폐수의 Biogas 자원화)

  • Min, Boo-Ki;Lee, Chang-Hyun;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, we operated a UASB (upflow anaerobic sludge blanket) reactor by using foodwaste leachate as a raw material with the method of Mesophilic Digestion ($35{\pm}0.5^{\circ}C$) and Thermophilic Digestion ($55{\pm}0.5^{\circ}C$). During 20 days of operating time with the Mesophilic Digestion, the recirculation ratio of effluent was stepwisely changed in every five days. Thermophilic Digestion was carried out at the same condition for Mesophilic Digestion. Results showed that the organic removal efficiency of Mesophilic Digestion was over 90% and the yield of methane production was from 66 up to 70%. The organic removal efficiency of Thermophilic Digestion was over 80% and the yield of methane production was between 62 to 68%. Also, when UASB reactor was operating to over the 3Q effluent recirculation, the experiment could be carried out economically and stably.

Effects of effluent recycling on the operating performance of UASB reactor (유출수 반송이 UASB 반응조 운전효율에 미치는 영향)

  • 이헌모;양병수
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.299-310
    • /
    • 1993
  • This study was aimed to evaluate the effects of effluent recycling on the UASB reactor performances at the various organic loading rates and influent substrate concentrations. The organic removal efficiency of the reactors operated with effluent recycle were above 85%. However, the efficiencies of the reactors operated without the recycle were below 40% even though the effort to increase the efficiencies was made by changing the influent substrate concentrations and the organic loading rates, and introducing the effluent recycle at the final stage of the experiment. It was realized that the certain amount of effluent recycling from the start-up stage in UASB reactors seemed to be necessary to provide the effective contact chances between the substrate and granular sludge for better performances of the UASB process.

  • PDF

Shape and Formation of Aerobic Granulation in SBR (SBR에서 호기성 입상슬러지의 형성)

  • Yun, Zuwhan;Jang, Heeran;Han, Jonghun;Han, Hyejung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.534-538
    • /
    • 2004
  • Granulation characteristics have been studied with an aerobic sequencing batch reactor(SBR). Organic loading of 2.46kg COD/$m^3$/day followed by 4.14kg COD/$m^3$/day had been applied to the lab-scale SBR with a very short settling time during the operating cycle. The granulation proceeded to the diameter range of 3 to 5 mm with MLSS concentration of 12,000mg/L at 45th days of operation while COD removal efficiency remained almost consistent after the granule formation. It has been noticed that aerobic granulation under the higher loading with a very short settling time seemed to be due to the microbial selection of better flocculating species.

Anaerobic Ammonium Oxidation(ANAMMOX) in a Granular Sludge Reactor and its Bio-molecular Characterization (입상 슬러지 반응조 내의 혐기성 암모늄 산화(ANAMMOX) 및 분자생태학적 특성 평가)

  • Han, Ji-Sun;Park, Hyun-A;Sung, Eun-Hae;Kim, Chang-Gyun;Yoon, Cho-Hee;Bae, Young-Shin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1213-1221
    • /
    • 2006
  • In this study, granular sludge used in an anaerobic process treating brewery waste was inoculated in a laboratory scale of reactor to induce anaerobic ammonium oxidation(ANAMMOX). The reactor was operated with synthetic wastewater, which prepared at 1:1 ratio of $NH_4^+-N$ over $NO_2^--N$. Changes in nitrogen concentration, COD, alkalinity and gas production were analyzed. There are 3 phases of spanning in experimental period according to influent nitrogen concentration. In the Phase 1, each of the concentration of $NH_4^+-N$ and $NO_2^--N$ were increased from 1.91 $gN/m^3{\cdot}d$ to 14.29 $gN/m^3{\cdot}d$. Ammonium nitrogen loading(same as nitrite nitrogen) was 23.81 $gN/m^3{\cdot}d$ in the Phase 2 and 19.05 $gN/m^3{\cdot}d$ in the Phase 3, respectively $NO_2^--N$ has been removed up to 99% during whole period while the removal efficiency of $NH_4^+-N$ was significantly varied. In Phase 2, $NH_4^+-N$ was removed up to 75%. Microorganisms varied temporally through three phases were characterized by 16s rDNA analysis methods. ANAMMOX bacteria were dominantly found in phase 2 when the removal rate of $NO_2^--N$and $NH_4^+-N$ was the highest up to 99% and 75%, respectively. Due to erroneous exposed to air, the removal efficiency of $NH_4^+-N$ was unexpectedly lowered, but ANAMMOX bacteria still existed.