Browse > Article
http://dx.doi.org/10.4491/eer.2014.19.1.023

Aerobic Granules for the Effective Oxidation of Ammonium Nitrogen  

Lee, Hyo Lee (Department of Environmental Engineering and Energy, Myongji University)
Ryu, Jae Hun (Department of Environmental Engineering and Energy, Myongji University)
Lee, Youn Pyo (Department of Environmental Engineering and Energy, Myongji University)
Kim, Tae Seok (Department of Environmental Engineering and Energy, Myongji University)
Kim, Min Kyeong (Department of Environmental Engineering and Energy, Myongji University)
Ahn, Do Thi Ngoc (Department of Environmental Engineering and Energy, Myongji University)
Ahn, Dae Hee (Department of Environmental Engineering and Energy, Myongji University)
Publication Information
Abstract
In this study, aerobic granules were applied to a lab-scale aerobic granule sludge airlift reactor (AGSAR) and the ammonium nitrogen oxidation performance was evaluated at different ammonium nitrogen loading rate (NLR). At least 99% of the initial ammonium nitrogen was oxidized at an NLR of 0.27 and 0.53 kg $NH_4{^+}-N/m^3{\cdot}day$, for both aerobic granules (control), and nitrifying aerobic granules (NAGs). The ammonium nitrogen oxidation deteriorated, when the NLR was increased to 1.07 kg $NH_4{^+}-N/m^3{\cdot}day$. The NAGs were characterized by complete nitrification, while partial nitrification was observed in the control.
Keywords
Aerobic granular sludge; Ammonium loading rate; Coating; Nitrification; Nitrifying bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liu Y, Qin L, Yang SF. Microbial granulation technology for nutrient removal from wastewater. New York: Nova Science Publishers; 2007.
2 Ni BJ, Fang F, Xie WM, Yu HQ. Growth, maintenance and product formation of autotrophs in activated sludge: taking the nitrite-oxidizing bacteria as an example. Water Res. 2008;42:4261-4270.   DOI   ScienceOn
3 Van-Benthum WA, Gariido-Fernandez JM, Tijhuis L, van Loosdrecht MC, Heijnen JJ. Formation and detachment of biofilms and granules in a nitrifying biofilm airlift suspension reactor. Biotechnol. Prog. 1996;12:764-772.
4 Liua YQ, Wu WW, Tay JH, Wang JL. Formation and long-term stability of nitrifying granules in a sequencing batch reactor. Bioresour. Technol. 2008;99:3919-3922.   DOI   ScienceOn
5 Moreau M, Liu Y, Capdeville B, Audic JM, Calvez L. Kinetic behavior of heterotrophic and autotrophic biofilms in wastewater treatment processes. Water Sci. Technol. 1994;29:385-391.
6 Shan H, Obbard J. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Appl. Microbiol. Biotechnol. 2001;57:791-798.   DOI
7 Carrera J, Jubany I, Carvallo L, Chamy R, Lafuente J. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilised biomass systems. Process Biochem. 2004;39:1159-1165.   DOI   ScienceOn
8 Tsuneda S, Miyoshi T, Hirata A. Biological nitrogen removal of wastewater discharged from demineralizer regenerating process in power plant. Jpn. J. Water Treat. Biol. 2001;37:9-17.   DOI
9 Moy BY, Tay JH, Toh SK, Liu Y, Tay ST. High organic loading influences the physical characteristics of aerobic sludge granules. Lett. Appl. Microbiol. 2002;34:407-412.   DOI   ScienceOn
10 Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res. 2002;36:1653-1665.   DOI   ScienceOn
11 Liu XW, Sheng GP, Yu HQ. Physicochemical characteristics of microbial granules. Biotechnol. Adv. 2009;27:1061-1070.   DOI   ScienceOn
12 Cydzik-Kwiatkowska A, Wojnowska-Baryla I. Nitrifying granules cultivation in a sequencing batch reactor at a low organics- to-total nitrogen ratio in wastewater. Folia Microbiol. (Praha) 2011;56:201-208.   DOI   ScienceOn
13 Ni BJ, Yu HQ. Growth and storage processes in aerobic granules grown on soybean wastewater. Biotechnol. Bioeng. 2008;100:664-672.   DOI   ScienceOn
14 de Beer D, van den Heuvel JC, Ottengraf SP. Microelectrode measurements of the activity distribution in nitrifying bacterial aggregates. Appl. Environ. Microbiol. 1993;59:573-579.
15 Tsuneda S, Nagano T, Hoshino T, Ejiri Y, Noda N, Hirata A. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor. Water Res. 2003;37:4965-4973.   DOI   ScienceOn
16 Shi XY, Sheng GP, Li XY, Yu HQ. Operation of a sequencing batch reactor for cultivating autotrophic nitrifying granules. Bioresour. Technol. 2010;101:2960-2964.   DOI   ScienceOn
17 Painter HA, Loveless JE. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated- sludge process. Water Res. 1983;17:237-248.   DOI   ScienceOn
18 Grommen R, Hauteghem IV, Wambeke MV, Verstraete W. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture 2002;211:115-124.   DOI   ScienceOn
19 Atlas RM, Parks LC. Handbook of microbiological media. Boca Raton: CRC Press; 1993.
20 Hatayama R, Chiba K, Noda K, et al. Characteristics of a highconcentration- ammonium sulfate-requiring ammoniaoxidizing bacterium isolated from deodorization plants of chicken farms. J. Biosci. Bioeng. 1999;87:245-248.   DOI   ScienceOn
21 Liu YQ, Tay JH. Cultivation of aerobic granules in a bubble column and an airlift reactor with divided draft tubes at low aeration rate. Biochem. Eng. J. 2007;34:1-7.   DOI   ScienceOn
22 Liu Y, Yang SF, Tay JH, Liu QS, Qin L, Li Y. Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb. Technol. 2004;34:371-379.   DOI   ScienceOn
23 Anthonisen AC, Loehr RC, Prakasam TB, Srinath EG. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed. 1976;48:835-852.
24 Shi XY, Yu HQ, Sun YJ, Huang X. Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor. Chem. Eng. J. 2009;147:102-109.   DOI   ScienceOn
25 Vazquez-Padin JR, Figueroa M, Mosquera-Corral A, Campos JL, Mendez R. Population dynamics of nitrite oxidizers in nitrifying granules. Water Sci. Technol. 2009;60:2529-2536.   DOI   ScienceOn
26 Tay JH, Xu HL, Teo KC. Molecular mechanism of granulation. I: H+ translocation-dehydration theory. J. Environ. Eng. (New York) 2000;126:403-410.
27 Liu YQ, Liu Y, Tay JH. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl. Microbiol. Biotechnol. 2004;65:143-148.
28 Liu Y, Yang SF, Tay JH. Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J. Biotechnol. 2004;108:161-169.   DOI   ScienceOn
29 Yang SF, Tay JH, Liu Y. Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules. J. Environ. Eng. (New York) 2005;131:86-92.
30 Schramm A, De Beer D, Gieseke A, Amann R. Microenvironments and distribution of nitrifying bacteria in a membranebound biofilm. J. Environ. Eng. (New York) 2000;2:680-686.
31 Vazquez-Padin JR, Pozo MJ, Jarpa M, et al. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. J. Hazard. Mater. 2009;166:336-341.   DOI   ScienceOn
32 Ruiz G, Jeison D, Rubilar O, Ciudad G, Chamy R. Nitrificationdenitrification via nitrite accumulation for nitrogen removal from wastewaters. Bioresour. Technol. 2006;97:330-335.   DOI   ScienceOn
33 Eaton AD, Clesceri LS, Rice EW, Greenberg AE. Standard methods for the examination of water and wastewater. 21st ed. Washington: American Public Health Association; 2005.
34 Jin RC, Zheng P, Mahmood Q, Hu BL. Osmotic stress on nitrification in an airlift bioreactor. J. Hazard. Mater. 2007;146:148-154.   DOI   ScienceOn
35 Jin RC, Zheng P, Mahmood Q, Zhang L. Performance of a nitrifying airlift reactor using granular sludge. Sep. Purif. Technol. 2008;63:670-675.   DOI   ScienceOn