• Title/Summary/Keyword: grain interaction

Search Result 160, Processing Time 0.025 seconds

Effect of MnO2 Addition on Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05CaTiO3 Piezoelectric Ceramics

  • Kim, Jong-Hyun;Seo, In-Tae;Hur, Joon;Kim, Dae-Hyeon;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.129-133
    • /
    • 2016
  • $MnO_2$ was added to the $0.95(Na_{0.5}K_{0.5})NbO_3-0.05CaTiO_3$ (NKN-CT) ceramics in order to promote the densification and improve the poling efficiency by increasing the resistance of the specimens. Densification and abnormal grain growth occurred in the $MnO_2$-added NKN-CT ceramics sintered at $1020^{\circ}C$, indicating that $MnO_2$ assisted the liquid-phase sintering of these materials. $Mn^{3+}$ ions were considered to enter the A-site of the matrix, thereby producing the free electrons, which interacted with the holes resulting from the evaporation of alkali ions. This interaction results in an increase in the resistance of the specimens. The increased resistance improved the poling efficiency and, hence, the dielectric and piezoelectric properties of the NKN-CT ceramics. A few of the $Mn^{3+}$ ions that entered the B-site of the NKN-CT matrix led to a slight increase in the mechanical quality factor.

Rotated Domains in Chemical Vapor Deposition-grown Monolayer Graphene on Cu(111): An Angle-resolved Photoemission Study

  • Jeon, Cheolho;Hwang, Han-Na;Lee, Wang-Geun;Kim, Kwang S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.114.1-114.1
    • /
    • 2014
  • Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the p band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy ($E_F$) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about 0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the $E_F$) by 0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and that the electron transfer is limited to that between the Shockley surface state of Cu(111) and the p band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains ($9.6^{\circ}$ and $8.4^{\circ}$), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

  • PDF

Analysis of the Relationship between Unconfined Compression Strength and Shear Strength of Frozen Soils (동결토의 일축압축강도와 전단강도 상관관계 분석에 관한 연구)

  • Kang, Jae-Mo;Lee, Jang-Guen;Lee, Joonyong;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • The mechanical behavior of frozen soils is different from that of unfrozen soils due to the phase change between water and ice. The strength characteristics of frozen soils are governed by the intrinsic material properties such as grain size, ice and water content, air bubbles, and by externally imposed testing conditions such as temperature, freezing time, and strain rate. Especially, the strength of the frozen soils is generally higher than that of unfrozen soils due to ice binding capacity with soil particles, and is strongly affected by a highly complex interaction between the solid soil skeleton and the pore matrix, composed of ice and unfrozen water. In this study, the direct shear test and unconfined compression test are carried out inside of a large-scaled freezing chamber, and the relationships between cohesion and unconfined compression strength under various freezing temperature conditions are discussed.

Influence of Roller Speed on Magnetic Properties and Structures of α-Fe/Nd2Fe14B Nanocomposite Magnets Prepared by Melt-spinning

  • Pei, Wenli;Lian, Fazeng;Fu, Meng;Zhou, Guiqin;Takahashi, M.
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.101-104
    • /
    • 2004
  • The crystallization behaviours of nanocomposite made by a function of quenching rate (roller speed) were studied. The results showed that there was one step c$\mathbb{r}$ystallization process for the alloy quenched at roller speed of 32 m/s, which could be shown as, Am (amorphouse) + ${\alpha}-Fe/Nd_2Fe_{14}B$ ${\rightarrow}$ ${\alpha}-Fe/Nd_2Fe_{14}B$ . For the alloy quenched at roller speed of 40 m/s, there was steps crystallization process taking place at different temperatures, which could be shown as, Am ${\rightarrow}$ ${\alpha}-Fe/Nd_2Fe_{23}B_3+Nd_2Fe_{14}B+Am`$ ${\rightarrow}$ ${\alpha}-Fe/Nd_2Fe_{14}B$. The presence of transition phase ($Nd_2Fe_{23}B_3$) was harmful to get fine and uniform grain size during crystallization process. Uniform microstructures and high magnetic properties could be attained for the as-quenched alloy containing less amorphous phase and no presence of transition phase during annealing treatment. For the alloy prepared at roller speed of 32 m/s, the following properties were obtained, $B_r= 0.904 T,_iH_c = 801 kA/m, (BH)_{max} = 122 kJ/m^3 and M_r/M_s = 0.6$.

Phase Formation of $BaTiO_3$ Thin Films by Sputtering (Sputtering법에 의한 $BaTiO_3$ 박막의 상형성에 관한 연구)

  • 안재민;최덕균;김영호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.657-663
    • /
    • 1993
  • BaTiO3 sputtering targets of 3 inch diameter were prepared by sintering the CIP (Cold Isotatic Pressing) compacts at 136$0^{\circ}C$ for 3hrs. The apparent density and grain size were 97% and 30${\mu}{\textrm}{m}$, respectively. After BaTiO3 films were deposited on Si and Pt/Ti/SiO2/Si substrates using these targets, films were annealed at various conditions and the crystallization behavior, reaction with the substrate and the electrical properties were investigated. The films on both substrates required 5~20hrs furnace annealing for crystallization at the temperatures from $600^{\circ}C$ to 80$0^{\circ}C$. For the films on Si substrate, interaction between the film and the substrate was suppressed upt o $700^{\circ}C$ for 10 hrs and the relative dielectric constant was 30. As the annelaing temperature and time were increased, the relative dielectric constants of the films decreased due to the formation of silicate phases through the reaction with the substrate. For the BaTiO3 films on Pt/Ti/SiO2/Si substrate, the reaction with the substrate was further reduced when the annealing condition was identical to that for Si substrate, but the reaction between the layers in Pt electrode took place above $700^{\circ}C$. When the films were annealed at $600^{\circ}C$ where the stability of Pt electrode was sustained, relative dielectric constant was increased to 110 since the reaction with substrate was effectively reduced even for a longer annealing time and the crystallization was enhanced.

  • PDF

Study on the Recovery and Recrystalligation of Cold-lolled Zr-based Alloys by Thermoelectric Power Measurement During Isothermal Annealing (TEP 분석을 이용한 냉간가공된 Zr-based 합금의 등온열처리에 따른 회복 및 재결정 거동에 관한 연구)

  • O, Yeong-Min;Jeong, Heung-Sik;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.483-491
    • /
    • 2001
  • The recovery and recrystallization behavior of cold-rolled Zr-based alloys during isothermal annealing at temperatures from $575^{\circ}C$ to $650^{\circ}C$ was studied by thermoelectric power and Vickers microhardness measurement. The recovery and recrystallization resulted in the increase of TEP doe to the extinction of lattice defect, vacancy, dislocation and stacking fault during isothermal annealing after cold- rolling. The completion of recrystallization could be determined much clearly by TEP behavior than by microhardness change in Zr-based alloys. Especially, the recovery and recrystallization were classified separately by TEP behavior in Zr-0.4Nb-xSn alloys. From the analysis of TEP behavior and microhardness, the addition of Sn caused to form the interaction between stain field and dislocation, which resulted in the delay of recovery in Zr-based alloys. The precipitation due the addition of Nb suppressed the grain growth after recrystallization effectively in Zr-based alloys.

  • PDF

Rotated Domains in Chemical Vapor Deposition-grown Monolayer Graphene on Cu(111): Angle-resolved Photoemission Study

  • Jeon, Cheolho;Hwang, Han-Na;Lee, Wang-Geun;Jung, Yong Gyun;Kim, Kwang S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.146.2-146.2
    • /
    • 2013
  • Copper is considered to be the most promising substrate for the growth of high-quality and large area graphene by chemical vapor deposition (CVD), in particular, on the (111) facet. Because the interactions between graphene and Cu substrates influence the orientation, quality, and properties of the synthesized graphene, we studied the interactions using angle-resolved photoemission spectroscopy. The evolution of both the Shockley surface state of the Cu(111) and the ${\pi}$ band of the graphene was measured from the initial stage of CVD growth to the formation of a monolayer. Graphene growth was initiated along the Cu(111) lattice, where the Dirac band crossed the Fermi energy (EF) at the K point without hybridization with the d-band of Cu. Then two rotated domains were additionally grown as the area covered with graphene became wider. The Dirac energy was about -0.4 eV and the energy of the Shockley surface state of Cu(111) shifted toward the EF by ~0.15 eV upon graphene formation. These results indicate weak interactions between graphene and Cu, and the electron transfer is limited to that between the Shockley surface state of Cu(111) and the ${\pi}$ band of graphene. This weak interaction and slight lattice mismatch between graphene and Cu resulted in the growth of rotated graphene domains ($9.6^{\circ}$ and $8.4^{\circ}$), which showed no significant differences in the Dirac band with respect to different orientations. These rotated graphene domains resulted in grain boundaries which would hinder a large-sized single monolayer growth on Cu substrates.

  • PDF

Air-Processed Efficient Perovskite Solar Cell via Antisolvent Additive Engineering (안티솔벤트 첨가제 공정에 의한 대기 중 고효율 페로브스카이트 태양전지 제작)

  • Se-Yeong Baek;Seok-Soon Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2024
  • Although antisolvent-assisted crystallization is one of the promising processes to produce high-quality perovskite films, general antisolvents such as chlorobenzene (CB) have toxic and volatile properties. In addition, CB is not suitable to control the crystallization of perovskite in the atmospheric air. In this work, isopropyl acetate (IA) is used as an eco-friendly antisolvent to demonstrate air-processed perovskite solar cells, and ethyl-4-cyanocinnamate (E4CN) with a cyano group, carbonyl group, and aromatic ring is introduced in IA to improve the performance and stability of devices. Defects at the surface and grain boundaries of the perovskite layer, such as un-coordinated Pb2+ and iodine, can be decreased resulting from the interaction of E4CN and perovskite, and thus reduced recombination and enhanced carrier transport can be expected. As a result, the perovskite device with E4CN achieves a high maximum power conversion efficiency (PCE) of 18.89% and outstanding stability, maintaining 60% of the initial efficiency for 300 h in the air without any encapsulation.

The effect of potash on the growth and yields of soybean at different level of soil fertility and application of fertilizer (토양(土壤)과 시비(施肥)를 달리할때 대두생육(大豆生育)에 미치는 가리(加里)의 영향(影響))

  • Cho, C.Y.;Maeng, D.W.
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.107-112
    • /
    • 1968
  • In order to study the effect of potash on the growth and yields of Soybean at different level of soil fertility and application of fertilizer (nitrogen, phosphate and calcium), $2^3$factorical experiment was carried out by pat culture with variety 'Chang-dan-baec-muc' which is most spreaded variety in Korea. The experiment consisted of five replications in a randomized block experiment with three factors (soil, fertilization and potash). Treatment were at two levels; infertile and fertile soil, none and some of fertilization and potash. Thus, the experiment comprised eight treatment combinations which consisted of all combinations. The results of this experiment are as follows: 1. No effect of each of three factors on flowering date was found. 2. Leaf-yellowing and maturing date was quickened on the fertile soil but no effect of fertilization and potash was found. 3. More premature leaf-yellowing was found on the fertile soil. 4. Deeper leaf colour cuss showed on the fertile soil and in the case of fertilization but no effect of potash was found. 5. Increasing tendency of following character: length and width of leaf, height and dia of stem, number of branches and pods; was most remarkable on the fertile soil. Application of fertilizer showed also remarkable tendency of increasing, while increasing tendency of potash was the least. 6. Same tendency was found with following charactors; weight of total plant. stem and shell, and commercial grains, weight of 100 grain and number of commercial grains. 7. As the results of analysis of variance for weight of commercial grain it, was found the teach of the three factors increased soybean yields significantly (weight of commercial grain) but the effect of potash was less than the other two factors. No significant interaction was found among three factors. 8. Greater effect of potash on increasing soybean yields was found on the fertile soil, and in the case of fertilization.

  • PDF

Research on the Effect of the Control Methods of Irrigation Water on the Growth and Yield of Paddy Rice. (한발기에 있어서 용수관리 방법이 수도생육과 그 수량에 미치는 영향에 관한 연구)

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2177-2190
    • /
    • 1971
  • This experiment was made to determienthe effect of various soil moisture contents in simulated drought conditions on different stages of rice growth. The drought conditions were developed at such three rice-growing stages as transplanting, immediately after transplanting and young ear forming. Three different lengths of drought periods, which are ten days, twenty days and thirty days, were applied for each growing stage of rice. The rice variety used this experiment is Nong-rim 29. This experiment was conducted at the university farm of the Kon-Kuk University during the period of $1968{\sim}1970$. Three reprications for each of 12 treatments and split plot design were employed in this study. Bottomless wood square boxes, $1^m{\times}1^m{\times}1^m$, were burried in the test plot and box top was covered with poloyethylene sheets to avoid natural rainfall drops. Standard plots were irrigated continuously with a water depth of 40mm/day and those of drought treatments were irrigated continuously up to the beginning of the planned drought period, and they were irrigated again with a depth of 40mm/day up to the maturing stage of rice. Other methods for rice raising followed those methods developed by the Field Crops Experiment Station of the Office of Rural Development. During this experiments, climatic conditions in regard to rainfalls, sunshine hours, and temperatures were observed. According to this observation, those values measured deviate slightly from the annual means. However the growing condition of rice plants were normal. The pH value of irritation water is nearly neutral, and soils in the test plots are relatively fertile, being similar to ordinary paddy soils. Analysis of variances for number of stalks, plan-height, ear sprouting date, length of stalks, ear length, number of ears per plant, fertility, grain weitght, weight of plant, and yield were carried out. The variances for plant height, ear sprouting date, length of stalk ear length, and yield has statistical significance under drought treatments applied at three different growing stages. The variance showing the effect of lengths of drought period is highly significant for all the treatments studied except that of grain weight. The interaction between drought periods and drought treatments at different growing stages is significant for plant height, stalk length, ear length, number of ears, fertility and yield, these results indicated that droughts at different growing stages have influence on plant height, ear length, yield, and length of drought period also has strong influence on all factors studied except grain weight. The combination of drought treatments at different rice growing stages and lengths of drought periods has different effects on various agronomic characteristics, including yield. Plant height under drought treatment practiced at transplanting stage is the lowest, and drought treatment applied immediately after transplanting resulted in the least number of stalks. The effect of different lengths of drought periods on plant height and number of stalks depends signis ficantly on increasing days of drought. Ear sprouting date tends to be delayed for one or two days undedrought treatments at transplanting period and with increasing days of drought. Better yield is secured in drought treatment applied immediately after transplanting. Adverse effect war observed when drought treatment was applied at ear forming period. These effects may be attributed to the alternation of irrigation and drought causing vigorous root activity. In general, yield linearly decreases as the length of the drought period increases. The results obtained in this study demonstrate that, in order to mimimize damage due to drought, and, to save irrigation water, paddy fields, immediately after transplanting, may be not irrigated, since there is sufficient moisture in the soil, and that sufficient irrigation water should be applied again in the ear forming stage of rice plant.

  • PDF