• Title/Summary/Keyword: grain growth behavior

Search Result 284, Processing Time 0.02 seconds

The Corrosion Behavior Study by AC Impedance Method for the Aging Heat Treated Nimonic 80A Superalloy (교류임피던스법에 의한 Nimonic 80A 초내열합금 시효열처리재의 부식거동 고찰)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.761-769
    • /
    • 1999
  • In this paper the effect of aging heat treatment to the Corrosion behavior for the Nimonic 80A superalloy was studied by AC Impedance methods. Tested solution was 3.5% with tempera-ture $25^{\circ}C$ Electro-chemical corrosion test were carried out for the Nimonic 80A super-alloy which solution heat treated at $1080^{\circ}C$ for 8 hours followed by aging heat treated at $650^{\circ}C,\;700^{\circ}C,\;750^{\circ}C\;800^{\circ}C$ and $850^{\circ}C$ with 16hours under vacuum environment. The obtained results were as follows; 1. Base metal and solution-treated materials were exhibited similar corrosion tendency as Ran-dle equivalent cell. The value of passive film resistance was 579 ohms for the base metal and 124,770 ohms for the solutionized metal such a difference was arose by the ${{\gamma}_^'}$ precipitate on the metal surface during heat treatment. 2. The measure value of $R_p$ for heat-treated at $650^{\circ}C,\;700^{\circ}C,\;800^{\circ}C$and $850^{\circ}C$ were 97,943, 93, 111, 26,961, 15,798 and 11,780ohm respectively. Which indicated that the passive film resistance Rp was reduced as aging temperature increased due to the growth of grain size and sensitization at the grain boundary. 3. The similar tendency was exhibited for corrosion behavior of the electro-chemical corrosion polarization method and AC impedance method and confirmed that AC impedance method was useful tool for corrosion research.

  • PDF

Generation of Charged Clusters and their Deposition in Polycrystalline Silicon Hot-Wire Chemical Vapor Deposition (열선 CVD 증착 다결정 실리콘에서 전하를 띈 클러스터의 생성 및 증착)

  • Lee, Jae-Ik;Kim, Jin-Yong;Kim, Do-Hyeon;Hwang, Nong-Moon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.561-566
    • /
    • 2005
  • Polycrystalline silicon films were deposited using hot wire CVD (HWCVD). The deposition of silicon thin films was approached by the theory of charged clusters (TCC). The TCC states that thin films grow by self-assembly of charged clusters or nanoparticles that have nucleated in the gas phase during the normal thin film process. Negatively charged clusters of a few nanometer in size were captured on a transmission electron microscopy (TEM) grid and observed by TEM. The negatively charged clusters are believed to have been generated by ion-induced nucleation on negative ions, which are produced by negative surface ionization on a tungsten hot wire. The electric current on the substrate carried by the negatively charged clusters during deposition was measured to be approximately $-2{\mu}A/cm^2$. Silicon thin films were deposited at different $SiH_4$ and $H_2$ gas mixtures and filament temperatures. The crystalline volume fraction, grain size and the growth rate of the films were measured by Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The deposit ion behavior of the si1icon thin films was related to properties of the charged clusters, which were in turn controlled by the process conditions. In order to verify the effect of the charged clusters on the growth behavior, three different electric biases of -200 V, 0 V and +25 V were applied to the substrate during the process, The deposition rate at an applied bias of +25 V was greater than that at 0 V and -200 V, which means that the si1icon film deposition was the result of the deposit ion of charged clusters generated in the gas phase. The working pressures had a large effect on the growth rate dependency on the bias appled to the substrate, which indicates that pressure affects the charging ratio of neutral to negatively charged clusters. These results suggest that polycrystalline silicon thin films with high crystalline volume fraction and large grain size can be produced by control1ing the behavior of the charged clusters generated in the gas phase of a normal HWCVD reactor.

  • PDF

A Study on Cu(B)/Ti/SiO2/Si Structure for Application to Advanced Manufacturing Process (차세대 공정에 적용 가능한 Cu(B)/Ti/SiO2/Si 구조 연구)

  • Lee Seob;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.246-250
    • /
    • 2004
  • We have investigated the effects of boron added to Cu film on the Cu-Ti reaction and microstructural evolution of Cu(B) alloy film during annealing of Cu(B)/Ti/$SiO_2$/Si structure. The result were compared with those of Cu(B)/$SiO_2$ structure to identify the effects of Ti glue layers on the Boron behavior and the result grain growth of Cu(B) alloy. The vacuum annealing of Cu(B)/Ti/$SiO_2$ multilayer structure allowed the diffusion of B to the Ti surface and forming $TiB_2$ compounds at the interface. The formed $TiB_2$ can act as a excellent diffusion barrier against Cu-Ti interdiffusion up to $800^{\circ}C$. Also, the resistivity was decreased to $2.3\mu$$\Omega$-cm after annealing at $800^{\circ}C$. In addition, the presence of Ti underlayer promoted the growth Cu(l11)-oriented grains and allowed for normal growth of Cu(B) film. This is in contrast with abnormal growth of randomly oriented Cu grains occurring in Cu(B)/$SiO_2$ upon annealing. The Cu(B)/Ti/$SiO_2$ structure can be implemented as an advanced metallization because it exhibits the low resistivity, high thermal stability and excellent diffusion barrier property.

Effects of $Y_2O_3$ addition and sintering time on denazification and thermal conductivity of AlN ceramics during hot-press sintering ($Y_2O_3$ 첨가와 소결 시간이 AlN 세라믹스의 일축 가압 소결 거동 및 열전도도에 미치는 영향)

  • Chae, Jae-Hong;Park, Joo-Seok;Ahn, Jong-Pil;Kim, Kyoung-Hun;Lee, Byung-Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.237-241
    • /
    • 2008
  • Hot-press sintering of AlN ceramics were carried out with $Y_2O_3$ as sintering additive at a sintering temperature $1,750{\sim}1,850^{\circ}C$. The effect of $Y_2O_3$ addition and sintering time on sintering behavior and thermal conductivity of AlN ceramics was investigated. $Y_2O_3$ added AlN showed noticeably higher denazification rate than pure AlN. The thermal conductivity of AlN specimens was promoted by the addition of $Y_2O_3$ in spite of the formation of YAG secondary phase in AlN grain boundaries and grain boundary triple junction because $Y_2O_3$ addition could reduced the oxygen contents in AlN lattice which is primary factor of thermal conductivity. Typically, the thermal conductivity of 5 wt% $Y_2O_3$ added specimen was dramatically improved by the increase of sintering time because the elimination of YAG secondary phases from the grain boundary due to the evaporation, as well as the grain-growth of AlN grains.

Effect of a Li2O Additive on the Sintering Behavior of UO2 in the H2 and CO2 Atmospheres

  • Kim, Si-Hyung;Joung, Chang-Young;Kim, Yeon-Gu;Lee, Soo-Chul;Kim, Ban-Soo;Na, Sang-Ho;Lee, Young-Woo;Suhr, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.567-572
    • /
    • 2004
  • The variation of the sintered density and grain size of UO$_2$ as a function of the Li$_2$O amount and sintering atmosphere was observed. Li$_2$O enhanced the grain growth of the UO$_2$ pellet in H$_2$, but rather hindered it in $CO_2$ atmosphere. Grain size of the UO$_2$ and UO$_2$-0.1 wt%Li$_2$O pellets was, respectively, 8 $\mu$m and 100 $\mu$m at 168$0^{\circ}C$ in the H$_2$ atmosphere, and that of each pellet was, respectively, 24 $\mu$m and 17 $\mu$m at the same temperature in the $CO_2$ atmosphere. As-received Li$_2$O powder, which had been composed of Li$_2$O and LiOH, was converted to the Li$_2$CO$_3$ phase after heating to 80$0^{\circ}C$ in $CO_2$. On the other hand, the Li$_2$O and LiOH phases remained unchanged in H$_2$ atmosphere. In the H$_2$, the as-received Li$_2$O powder began to evaporate at about 105$0^{\circ}C$ and then about 20 wt% residue was left at 150$0^{\circ}C$. But, most of the Li elements evaporated at 150$0^{\circ}C$ in the $CO_2$ atmosphere.

Effects of $Nb_2O_5$, and Oxygen Potential on Sintering Behavior of $UO_2$ Fuel Pellets

  • Song, Kun-Woo;Kim, Keon-Sik;Kang, Ki-Won;Jung, Youn-Ho
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 1999
  • The effects of N $b_2$ $O_{5}$ and oxygen potential on the densification and grain growth of U $O_2$ fuel have been investigated.0.3 wt% N $b_2$ $O_{5}$ -doped U $O_2$fuel pellets were sintered at 1$700^{\circ}C$ for 4 hours in sintering atmospheres which have various ratios of $H_2O$ to $H_2$ gas. Compared with those of undoped U $O_2$ pellets, the sintered density and grain size of the 0.3 wt% N $b_2$ $O_{5}$ -doped U $O_2$ pellet increase under the $H_2O$/ $H_2$ gas ratio of 5.0$\times$10$^{-3}$ to 1.0$\times$10$^{-2}$ and under the $H_2O$/ $H_2$gas ratio of 5.0$\times$10$^{-3}$ to $1.5\times$10$^{-2}$ , respectively. The sintering of U $O_2$fuel pellets containing 0.1 wt% to 0.5 wt% N $b_2$ $O_{5}$ was carried out at 168$0^{\circ}C$ for 4 hours. The enhancing effect of N $b_2$ $O_{5}$ on the sintered density and grain size becomes larger as the N $b_2$ $O_{5}$ content increases. The solubility limit of N $b_2$ $O_{5}$ in U $O_{2}$ seems to be between 0.3 wt% and 0.5 wt%, and beyond the solubility limit the second phase whose composition corresponds near to N $b_2$U $O_{6}$ is precipitated on grain boundary. The enhancement of densification and grain growth in U $O_2$ is attributed to the increased concentration of a uranium vacancy which is formed by the interstitial N $b^{4+}$ ion in the U $O_2$ lattice.

  • PDF

Revised Crackling Core Model Accounting for Fragmentation Effect and Variable Grain Conversion Time : Application to UO2 Sphere Oxidation (파편화 효과와 결정립 가변 전환시간을 고려한 Crackling Core Model의 개선 : UO2 구형 입자의 산화거동으로의 적용)

  • Lee, Ju Ho;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.411-420
    • /
    • 2018
  • This study presents a revised crackling core model for the description of $UO_2$ sphere oxidation in air atmosphere. For close reproduction of the sigmoid behavior exhibited in $UO_2$ to $U_3O_8$ conversion, the fragmentation effect contributing to the increased reactive surface area and the concept of variable grain conversion time were considered in the model development. Under the assumptions of two-step successive reaction of $UO_2{\rightarrow}U_3O_7{\rightarrow}U_3O_8$ and final grain conversion time equivalent to ten times the initial grain conversion time, the revised model showed good agreement with the experimental data measured at 599 - 674 K and a lowest deviation when compared with Nucleation and Growth model and AutoCatalytic Reaction model. The evaluated activation energy at 100% conversion to $U_3O_8$, $57.6kJ{\cdot}mol^{-1}$, was found to be closer to the experimentally extrapolated value than to the value determined in AutoCatalytic Reaction model, $48.6kJ{\cdot}mol^{-1}$.

Growth Behavior and Thermal Stability of CoSi2 Layer on Poly-Si Substrate Using Reactive Chemical Vapor Deposition (반응성 CVD를 이용한 다결정 실리콘 기판에서의 CoSi2 layer의 성장거동과 열적 안정성에 관한 연구)

  • Kim, Sun-Il;Lee, Heui-Seung;Park, Jong-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Uniform polycrystalline $CoSi_2$layers have been grown in situ on a polycrystalline Si substrate at temperature near $625^{\circ}C$ by reactive chemical vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η$^{5}$ -C$_{5}$ H$_{5}$ )(CO)$_2$. The growth behavior and thermal stability of $CoSi_2$layer grown on polycrystalline Si substrates were investigated. The plate-like CoSi$_2$was initially formed with either (111), (220) or (311) interface on polycrystalline Si substrate. As deposition time was increasing, a uniform epitaxial $CoSi_2$layer was grown from the discrete $CoSi_2$plate, where the orientation of the$ CoSi_2$layer is same as the orientation of polycrystalline Si grain. The interface between $CoSi_2$layer and polycrystalline Si substrate was always (111) coherent. The growth of the uniform $CoSi_2$layer had a parabolic relationship with the deposition time. Therefore we confirmed that the growth of $CoSi_2$layer was controlled by diffusion of cobalt. The thermal stability of $CoSi_2$layer on small grain-sized polycrystalline Si substrate has been investigated using sheet resistance measurement at temperature from $600^{\circ}C$ to $900^{\circ}C$. The $CoSi_2$layer was degraded at $900^{\circ}C$. Inserting a TiN interlayer between polycrystalline Si and $_CoSi2$layers improved the thermal stability of $CoSi_2$layer up to $900^{\circ}C$ due to the suppression of the Co diffusion.

Carbon diffusion behavior and mechanical properties of carbon-doped TiZrN coatings by laser carburization (레이저 침탄된 TiZrN 코팅에서 탄소확산거동과 기계적 특성)

  • Yoo, Hyunjo;Kim, Taewoo;Kim, Seonghoon;Jo, Ilguk;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.32-36
    • /
    • 2021
  • This study was investigated in carbon diffusion behavior of laser-carburized TiZrN coating layer and the changes of mechanical properties. The carbon paste was deposited on TiZrN coatings, and the laser was irradiated to carburize into the coatings. The XRD peak corresponding to the (111) plane shifted to a lower angle after the carburization, showing the lattice expansion by doped carbon. The decreased grain size implied the compression by the grain boundary diffusion of carbon. The XPS spectra for the bonding states of carbon was analyzed that carbon was substitute to nitrogen atoms in TiZrN, as carbide, through the thermal energy of laser. In addition, the combination of sp2 and sp3 hybridized bonds represented the formation of an amorphous carbon. The cross-sectional TEM image and the inverse FFT of the TiZrN coating after carburizing were observed as the wavy shape, confirming the amorphous phase located in grain boundaries. After the carburization, the hardness increased from 34.57 GPa to 38.24 GPa, and the friction coefficient decreased by 83 %. In particular, the ratio of hardness and elastic modulus (H/E) which is used as an index of the elastic recovery, increased from 0.11 to 0.15 and the wear rate improved by 65 %.

Crystalline Behavior and Microstructure Analysis in Fe73.28Si13.43B8.72Cu0.94Nb3.63 Alloy

  • Oh, Young Hwa;Kim, Yoon Bae;Seok, Hyun Kwang;Kim, Young-Woon
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.50-54
    • /
    • 2017
  • The microstructure, the crystallization behavior, and magnetic properties of FeSi-based soft magnetic alloys (FINEMET) were investigated using transmission electron microscopy, X-ray diffraction, and coercive force measurements. The amorphous $Fe_{73.28}Si_{13.43}B_{8.72}Cu_{0.94}Nb_{3.63}$ alloys particles, prepared in $10^{-4}$ torr by gas atomization process, were heat treated at $530^{\circ}C$, $600^{\circ}C$, and $670^{\circ}C$ for 1 hour in a vacuum of $10^{-2}$ torr. Nanocrystalline Fe precipitation was first formed followed by the grain growth. Phase formation and crystallite sizes was compared linked to its magnetic behavior, which showed that excellent soft magnetic property can directly be correlated with its microstructure.