DOI QR코드

DOI QR Code

Revised Crackling Core Model Accounting for Fragmentation Effect and Variable Grain Conversion Time : Application to UO2 Sphere Oxidation

파편화 효과와 결정립 가변 전환시간을 고려한 Crackling Core Model의 개선 : UO2 구형 입자의 산화거동으로의 적용

  • Received : 2018.07.12
  • Accepted : 2018.09.11
  • Published : 2018.12.31

Abstract

This study presents a revised crackling core model for the description of $UO_2$ sphere oxidation in air atmosphere. For close reproduction of the sigmoid behavior exhibited in $UO_2$ to $U_3O_8$ conversion, the fragmentation effect contributing to the increased reactive surface area and the concept of variable grain conversion time were considered in the model development. Under the assumptions of two-step successive reaction of $UO_2{\rightarrow}U_3O_7{\rightarrow}U_3O_8$ and final grain conversion time equivalent to ten times the initial grain conversion time, the revised model showed good agreement with the experimental data measured at 599 - 674 K and a lowest deviation when compared with Nucleation and Growth model and AutoCatalytic Reaction model. The evaluated activation energy at 100% conversion to $U_3O_8$, $57.6kJ{\cdot}mol^{-1}$, was found to be closer to the experimentally extrapolated value than to the value determined in AutoCatalytic Reaction model, $48.6kJ{\cdot}mol^{-1}$.

공기 분위기하 $UO_2$의 독특한 산화거동을 모사하기 위해 기존 Crackling Core Model (CCM)을 개선하였다. $UO_2$$U_3O_8$으로 전환될 때 시간-전환율 곡선에서 나타나는 실험적 sigmoid 거동을 근사하게 재현할 수 있도록 모델 개선에 파편화 효과로 인한 반응 표면적 증대 및 결정립 가변 전환시간 개념을 고려하였다. $UO_2$$U_3O_7$을 거쳐 $U_3O_8$으로 전환되며 최종 결정립 산화소요 시간은 초기 결정립 산화 소요 시간의 10배에 해당한다는 가정을 도입했을 때, 개선된 모델은 599 - 674 K에서의 $UO_2$ 구형 입자의 실험적 산화거동과 근사한 계산결과를 나타내었으며 핵종성장모델(Nucleation and Growth Model) 및 자촉매반응모델(AutoCatalytic Reaction Model)과 비교할 때 가장 작은 오차를 보여주었다. 개선된 모델을 통해 $U_3O_8$으로의 100% 전환시 계산된 활성화에너지값은 $57.6kJ{\cdot}mol^{-1}$로 자촉매반응모델로 계산된 값인 $48.6kJ{\cdot}mol^{-1}$보다 크며, 외삽에 의해 결정된 실험값에 더 근사함이 밝혀졌다.

Keywords

References

  1. D.G. Boase and T.T. Vandergraaf, "The Canadian Spent Fuel Storage Canister: Some Materials Aspects", Nucl. Technol., 32(1), 60-71 (1977). https://doi.org/10.13182/NT77-A31738
  2. T.G. Stanford, Mathematical modeling of the voloxidation process. Final Report, South Carolina Univ. Report, DOE/ET/00944-1 (1979).
  3. L. Quemard, L. Desgranges, V. Bouineau, M. Pijolat, G. Baldinozzi, N. Millot, J.C. Niepce, and A. Poulesquen, "On the origin of the sigmoid shape in the $UO_2$ oxidation weight gain curves", J. Eur. Ceram. Soc., 29(13), 2791-2798 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.04.010
  4. J.W. Choi, R.J. McEachern, P. Taylor, and D.D. Wood, "The effect of fission products on the rate of $U_3O_8$ formation in SIMFUEL oxidized in air at $250^{\circ}C$", J. Nucl. Mater., 230(3), 250-258 (1996). https://doi.org/10.1016/0022-3115(96)80022-5
  5. B.H. Park and C.S. Seo, "A semi-empirical model for the air oxidation kinetics of $UO_2$", Korean J. Chem. Eng., 25(10), 59-63 (2008). https://doi.org/10.1007/s11814-008-0010-9
  6. S.M. Jeong, K.C. Kwon, B.H. Park, and C.S. Seo, "A Kinetic study of the oxidation of uranium dioxide", React. Kinet. Catal. Lett., 89(2), 269-275 (2006). https://doi.org/10.1007/s11144-006-0137-9
  7. J.I. Ryu and S.M. Woo, "A new gas-solid reaction model for voloxidation process with spallation", Nucl. Eng. Technol., 50(1), 145-150 (2018). https://doi.org/10.1016/j.net.2017.11.005
  8. J.Y. Park and O. Levenspiel, "The Crackling Core Model for the reaction of solid particles", Chem. Eng. Sci., 30(10), 1207-1214 (1975). https://doi.org/10.1016/0009-2509(75)85041-X
  9. J.Y. Park, "Optimum Operating Cycle for Systems with Deactivating Catalyst and the Reaction of Solid Particles", Ph.D. Thesis, Oregon State University (1976).
  10. P. Lefort, J. Demaison, and M. Billy, "Comportement du nitrure cubique ${\delta}$ en atmosphere d'oxygene", Mater. Res. Bull., 14(4), 479-486 (1979). https://doi.org/10.1016/0025-5408(79)90189-2
  11. K.T. Harrison, C. Padgett, and K.T. Scott, "The kinetics of the oxidation of irradiated uranium dioxide spheres in dry air", J. Nucl. Mater., 23(2), 121-138 (1967). https://doi.org/10.1016/0022-3115(67)90058-X
  12. S. Yagi and D. Kunii, "Studies on combustion of carbon particles in flames and fluidized beds", Symp. (Int.) Combust., 5(1), 231-244 (1955). https://doi.org/10.1016/S0082-0784(55)80033-1
  13. K.H. Kang, S.H. Na, K.C. Song, S.H. Lee, and S.W. Kim, "Oxidation behavior of the simulated fuel with dissolved fission products in air at 573-873 K", Thermochim. Acta, 455(1-2), 129-133 (2007). https://doi.org/10.1016/j.tca.2006.11.021
  14. M. Iwasaki, T. Sakurai, N. Ishikawa, and Y. Kobayashi, "Oxidation of $UOM_2$ Pellets in Air", J. Nucl. Sci. Technol., 5(12), 652-653 (2012). https://doi.org/10.1080/18811248.1968.9732532