Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2018.16.4.411

Revised Crackling Core Model Accounting for Fragmentation Effect and Variable Grain Conversion Time : Application to UO2 Sphere Oxidation  

Lee, Ju Ho (Korea Atomic Energy Research Institute)
Cho, Yung-Zun (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.16, no.4, 2018 , pp. 411-420 More about this Journal
Abstract
This study presents a revised crackling core model for the description of $UO_2$ sphere oxidation in air atmosphere. For close reproduction of the sigmoid behavior exhibited in $UO_2$ to $U_3O_8$ conversion, the fragmentation effect contributing to the increased reactive surface area and the concept of variable grain conversion time were considered in the model development. Under the assumptions of two-step successive reaction of $UO_2{\rightarrow}U_3O_7{\rightarrow}U_3O_8$ and final grain conversion time equivalent to ten times the initial grain conversion time, the revised model showed good agreement with the experimental data measured at 599 - 674 K and a lowest deviation when compared with Nucleation and Growth model and AutoCatalytic Reaction model. The evaluated activation energy at 100% conversion to $U_3O_8$, $57.6kJ{\cdot}mol^{-1}$, was found to be closer to the experimentally extrapolated value than to the value determined in AutoCatalytic Reaction model, $48.6kJ{\cdot}mol^{-1}$.
Keywords
$UO_2$ oxidation; Fragmentation; Crackling core model; Grain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D.G. Boase and T.T. Vandergraaf, "The Canadian Spent Fuel Storage Canister: Some Materials Aspects", Nucl. Technol., 32(1), 60-71 (1977).   DOI
2 T.G. Stanford, Mathematical modeling of the voloxidation process. Final Report, South Carolina Univ. Report, DOE/ET/00944-1 (1979).
3 L. Quemard, L. Desgranges, V. Bouineau, M. Pijolat, G. Baldinozzi, N. Millot, J.C. Niepce, and A. Poulesquen, "On the origin of the sigmoid shape in the $UO_2$ oxidation weight gain curves", J. Eur. Ceram. Soc., 29(13), 2791-2798 (2009).   DOI
4 J.W. Choi, R.J. McEachern, P. Taylor, and D.D. Wood, "The effect of fission products on the rate of $U_3O_8$ formation in SIMFUEL oxidized in air at $250^{\circ}C$", J. Nucl. Mater., 230(3), 250-258 (1996).   DOI
5 B.H. Park and C.S. Seo, "A semi-empirical model for the air oxidation kinetics of $UO_2$", Korean J. Chem. Eng., 25(10), 59-63 (2008).   DOI
6 S.M. Jeong, K.C. Kwon, B.H. Park, and C.S. Seo, "A Kinetic study of the oxidation of uranium dioxide", React. Kinet. Catal. Lett., 89(2), 269-275 (2006).   DOI
7 J.I. Ryu and S.M. Woo, "A new gas-solid reaction model for voloxidation process with spallation", Nucl. Eng. Technol., 50(1), 145-150 (2018).   DOI
8 J.Y. Park and O. Levenspiel, "The Crackling Core Model for the reaction of solid particles", Chem. Eng. Sci., 30(10), 1207-1214 (1975).   DOI
9 J.Y. Park, "Optimum Operating Cycle for Systems with Deactivating Catalyst and the Reaction of Solid Particles", Ph.D. Thesis, Oregon State University (1976).
10 P. Lefort, J. Demaison, and M. Billy, "Comportement du nitrure cubique ${\delta}$ en atmosphere d'oxygene", Mater. Res. Bull., 14(4), 479-486 (1979).   DOI
11 K.T. Harrison, C. Padgett, and K.T. Scott, "The kinetics of the oxidation of irradiated uranium dioxide spheres in dry air", J. Nucl. Mater., 23(2), 121-138 (1967).   DOI
12 M. Iwasaki, T. Sakurai, N. Ishikawa, and Y. Kobayashi, "Oxidation of $UOM_2$ Pellets in Air", J. Nucl. Sci. Technol., 5(12), 652-653 (2012).   DOI
13 S. Yagi and D. Kunii, "Studies on combustion of carbon particles in flames and fluidized beds", Symp. (Int.) Combust., 5(1), 231-244 (1955).   DOI
14 K.H. Kang, S.H. Na, K.C. Song, S.H. Lee, and S.W. Kim, "Oxidation behavior of the simulated fuel with dissolved fission products in air at 573-873 K", Thermochim. Acta, 455(1-2), 129-133 (2007).   DOI