• 제목/요약/키워드: gradient penalty

검색결과 40건 처리시간 0.021초

A STOCHASTIC VARIANCE REDUCTION METHOD FOR PCA BY AN EXACT PENALTY APPROACH

  • Jung, Yoon Mo;Lee, Jae Hwa;Yun, Sangwoon
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1303-1315
    • /
    • 2018
  • For principal component analysis (PCA) to efficiently analyze large scale matrices, it is crucial to find a few singular vectors in cheaper computational cost and under lower memory requirement. To compute those in a fast and robust way, we propose a new stochastic method. Especially, we adopt the stochastic variance reduced gradient (SVRG) method [11] to avoid asymptotically slow convergence in stochastic gradient descent methods. For that purpose, we reformulate the PCA problem as a unconstrained optimization problem using a quadratic penalty. In general, increasing the penalty parameter to infinity is needed for the equivalence of the two problems. However, in this case, exact penalization is guaranteed by applying the analysis in [24]. We establish the convergence rate of the proposed method to a stationary point and numerical experiments illustrate the validity and efficiency of the proposed method.

Super-Resolution Reconstruction of Humidity Fields based on Wasserstein Generative Adversarial Network with Gradient Penalty

  • Tao Li;Liang Wang;Lina Wang;Rui Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1141-1162
    • /
    • 2024
  • Humidity is an important parameter in meteorology and is closely related to weather, human health, and the environment. Due to the limitations of the number of observation stations and other factors, humidity data are often not as good as expected, so high-resolution humidity fields are of great interest and have been the object of desire in the research field and industry. This study presents a novel super-resolution algorithm for humidity fields based on the Wasserstein generative adversarial network(WGAN) framework, with the objective of enhancing the resolution of low-resolution humidity field information. WGAN is a more stable generative adversarial networks(GANs) with Wasserstein metric, and to make the training more stable and simple, the gradient cropping is replaced with gradient penalty, and the network feature representation is improved by sub-pixel convolution, residual block combined with convolutional block attention module(CBAM) and other techniques. We evaluate the proposed algorithm using ERA5 relative humidity data with an hourly resolution of 0.25°×0.25°. Experimental results demonstrate that our approach outperforms not only conventional interpolation techniques, but also the super-resolution generative adversarial network(SRGAN) algorithm.

벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법 (Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function)

  • 정주성;최윤철;이강석
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

초고해상도 영상 복원을 위한 Preconditioned Conjugate Gradient 최적화 기법 (Preconditioned Conjugate Gradient Method for Super Resolution Image Reconstruction)

  • 이은성;김정태
    • 한국통신학회논문지
    • /
    • 제31권8C호
    • /
    • pp.786-794
    • /
    • 2006
  • 본 논문에서는 초고해상도 영상을 복원하기 위한 최적화 기법으로 널리 사용되는 PCG(Preconditioned Conjugate Gradient) 기법을 위한 새로운 preconditioner를 제안하였다. 제안된 preconditioner는 기존의 블록 circulant preconditioner를 확장하여 roughness 벌칙 함수에 대해서 효과적인 수렴이 가능하도록 한 것으로써, 잡음에 민감한 기존 방법의 성능을 개선할 수 있는 것이다. 제안된 preconditioner의 성능을 확인하기 위한 실험과 시뮬레이션에서 제안된 PCG 방법은 기존 방법보다 우수한 수렴 속도를 보였다.

WGAN의 성능개선을 위한 효과적인 정칙항 제안 (Proposing Effective Regularization Terms for Improvement of WGAN)

  • 한희일
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.13-20
    • /
    • 2021
  • A Wasserstein GAN(WGAN), optimum in terms of minimizing Wasserstein distance, still suffers from inconsistent convergence or unexpected output due to inherent learning instability. It is widely known some kinds of restriction on the discriminative function should be considered to solve such problems, which implies the importance of Lipschitz continuity. Unfortunately, there are few known methods to satisfactorily maintain the Lipschitz continuity of the discriminative function. In this paper we propose techniques to stably maintain the Lipschitz continuity of the discriminative function by adding effective regularization terms to the objective function, which limit the magnitude of the gradient vectors of the discriminator to one or less. Extensive experiments are conducted to evaluate the performance of the proposed techniques, which shows the single-sided penalty improves convergence compared with the gradient penalty at the early learning process, while the proposed additional penalty increases inception scores by 0.18 after 100,000 number of learning.

L1-penalized AUC-optimization with a surrogate loss

  • Hyungwoo Kim;Seung Jun Shin
    • Communications for Statistical Applications and Methods
    • /
    • 제31권2호
    • /
    • pp.203-212
    • /
    • 2024
  • The area under the ROC curve (AUC) is one of the most common criteria used to measure the overall performance of binary classifiers for a wide range of machine learning problems. In this article, we propose a L1-penalized AUC-optimization classifier that directly maximizes the AUC for high-dimensional data. Toward this, we employ the AUC-consistent surrogate loss function and combine the L1-norm penalty which enables us to estimate coefficients and select informative variables simultaneously. In addition, we develop an efficient optimization algorithm by adopting k-means clustering and proximal gradient descent which enjoys computational advantages to obtain solutions for the proposed method. Numerical simulation studies demonstrate that the proposed method shows promising performance in terms of prediction accuracy, variable selectivity, and computational costs.

음성인식 성능 개선을 위한 다중작업 오토인코더와 와설스타인식 생성적 적대 신경망의 결합 (Combining multi-task autoencoder with Wasserstein generative adversarial networks for improving speech recognition performance)

  • 고조원;고한석
    • 한국음향학회지
    • /
    • 제38권6호
    • /
    • pp.670-677
    • /
    • 2019
  • 음성 또는 음향 이벤트 신호에서 발생하는 배경 잡음은 인식기의 성능을 저하시키는 원인이 되며, 잡음에 강인한 특징을 찾는데 많은 노력을 필요로 한다. 본 논문에서는 딥러닝을 기반으로 다중작업 오토인코더(Multi-Task AutoEncoder, MTAE) 와 와설스타인식 생성적 적대 신경망(Wasserstein GAN, WGAN)의 장점을 결합하여, 잡음이 섞인 음향신호에서 잡음과 음성신호를 추정하는 네트워크를 제안한다. 본 논문에서 제안하는 MTAE-WGAN는 구조는 구배 페널티(Gradient Penalty) 및 누설 Leaky Rectified Linear Unit (LReLU) 모수 Parametric ReLU (PReLU)를 활용한 변수 초기화 작업을 통해 음성과 잡음 성분을 추정한다. 직교 구배 페널티와 파라미터 초기화 방법이 적용된 MTAE-WGAN 구조를 통해 잡음에 강인한 음성특징 생성 및 기존 방법 대비 음소 오인식률(Phoneme Error Rate, PER)이 크게 감소하는 성능을 보여준다.

축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석 (Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies)

  • 장동환;조승한;황병복
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

반복 선형행렬부등식을 이용한 축소차수 제어기 설계 (Reduced-order controller design via an iterative LMI method)

  • 김석주;권순만;이종무;김춘경;천종민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2242-2244
    • /
    • 2004
  • This paper deals with the design of a reduced-order stabilizing controller for the linear system. The coupled lineal matrix inequality (LMI) problem subject to a rank condition is solved by a sequential semidefinite programming (SDP) approach. The nonconvex rank constraint is incorporated into a strictly linear penalty function, and the computation of the gradient and Hessian function for the Newton method is not required. The penalty factor and related term are updated iteratively. Therefore the overall procedure leads to a successive LMI relaxation method. Extensive numerical experiments illustrate the proposed algorithm.

  • PDF

유전자 알고리즘(GA)을 이용한 구조물의 동적해석 및 최적화 (Structural Dynamic Optimization Using a Genetic Algorithm(GA))

  • 이영우;성활경
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.93-99
    • /
    • 2000
  • In many dynamic structural optimization problems, the goal is to reduce the total weight of the structure without causing the resonance. Up to now, gradient informations(i.e., design sensitivity) have been used to achieve the goal. For some class of dynamic problems, especially coalescent eigenvalue Problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique fur structural dynamic modification using a mode modification method with Genetic Algorithm(GA). In GA formulation, fitness is defined based on penalty function approach. Design variables are iteratively improved by using genetic algorithm. Two numerical examples are shown, (ⅰ) a cantilevered plate, and (ⅱ) H-shaped structure. The results demonstrate that the proposed method is highly efficient.

  • PDF