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ABSTRACT: As the presence of background noise in acoustic signal degrades the performance of speech or 

acoustic event recognition, it is still challenging to extract noise-robust acoustic features from noisy signal. In this 

paper, we propose a combined structure of Wasserstein Generative Adversarial Network (WGAN) and Multi- 

Task AutoEncoder (MTAE) as deep learning architecture that integrates the strength of MTAE and WGAN 

respectively such that it estimates not only noise but also speech features from noisy acoustic source. The proposed 

MTAE-WGAN structure is used to estimate speech signal and the residual noise by employing a gradient penalty 

and a weight initialization method for Leaky Rectified Linear Unit (LReLU) and Parametric ReLU (PReLU). The 

proposed MTAE-WGAN structure with the adopted gradient penalty loss function enhances the speech features 

and subsequently achieve substantial Phoneme Error Rate (PER) improvements over the stand-alone Deep 

Denoising Autoencoder (DDAE), MTAE, Redundant Convolutional Encoder-Decoder (R-CED) and Recurrent 

MTAE (RMTAE) models for robust speech recognition.

Keywords: Speech enhancement, Wasserstein Generative Adversarial Network (WGAN), Weight initialization, Robust 

speech recognition, Deep Neural Network (DNN)
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초    록: 음성 또는 음향 이벤트 신호에서 발생하는 배경 잡음은 인식기의 성능을 저하시키는 원인이 되며, 잡음에 

강인한 특징을 찾는데 많은 노력을 필요로 한다. 본 논문에서는 딥러닝을 기반으로 다중작업 오토인코더(Multi-Task 

AutoEncoder, MTAE) 와 와설스타인식 생성적 적대 신경망(Wasserstein GAN, WGAN)의 장점을 결합하여, 잡음

이 섞인 음향신호에서 잡음과 음성신호를 추정하는 네트워크를 제안한다. 본 논문에서 제안하는 MTAE-WGAN는 

구조는 구배 페널티(Gradient Penalty) 및 누설 Leaky Rectified Linear Unit (LReLU) 모수 Parametric ReLU 

(PReLU)를 활용한 변수 초기화 작업을 통해 음성과 잡음 성분을 추정한다. 직교 구배 페널티와 파라미터 초기화 방법

이 적용된 MTAE-WGAN 구조를 통해 잡음에 강인한 음성특징 생성 및 기존 방법 대비 음소 오인식률(Phoneme 

Error Rate, PER)이 크게 감소하는 성능을 보여준다.
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(ASR) technologies have been widely used in our daily 

lives such as in intelligent virtual assistants, mobile 

devices and other electronic devices. However, presence 

of various types of noise in speech or intended acoustic 

signal degrades the performance of such recognition 

systems. Speech enhancement is considered a very crucial 

technique because it can reduce the impact of noise and 

improve recognition accuracy. There have been many 

approaches such as traditional speech enhancement 

approaches include Wiener filter,[1] Short Time Spectral 

Amplitude-Minimum Mean Square Error (STSA-MMSE)[2] 

and nonnegative matrix factorization.[3] Deep learning 

approaches include Deep Denoising AutoEncoder (DDAE), 

Deep Neural Network (DNN),[4] Convolutional Neural 

Network (CNN),[5] or Recurrent Neural Network (RNN)[6] 

have been applied for speech enhancement in past few 

years, and they can be divided into a regression method 

(mapping-based targets)[1,5,7] and a classification method 

(masking-based targets).[8,9] Although these methods have 

attained an acceptable level for speech enhancement, there 

is still room for improvement.

In recent years, Generative Adversarial Network (GAN) 

has been widely used across many applications of deep 

learning, from image generation[10] to video and sequence 

generation,[11,12] and has achieved better performance. 

Speech Enhancement GAN (SEGAN) is the first GAN- 

based model used for speech enhancement.[13] GAN is 

considered hard to train and sensitive to hyper-parameters. 

Also, the training loss type (L1 or L2) affects the enhance-

ment performance as it has been noticed by Pandey and 

Wang, where the adversarial loss training in SEGAN does 

not achieve better performance than L1 loss training.[14] In 

addition, Donahue, et al. proposed Frequency-domain 

SEGAN (FSEGAN)[15] for robust attention-based ASR 

system,[16] and achieved lower Word Error Rate (WER) 

than WaveNet[17] based SEGAN. Afterward, Michelsanti 

proposed a state-of-the-art CNN based Pix2Pix frame-

work[18] and Mimura et al. proposed a Cycle-GAN-based 

acoustic feature transformation[19] for robust ASR model.

These studies using many kinds of GAN framework 

demonstrated improved performances for speech enhan-

cement tasks. Nonetheless,[13,15,19] compared their methods 

with conventional methods. Therefore, it is hard to de-

monstrate the advantage of adversarial loss training over 

L1 loss training for speech enhancement. In this work, we 

illustrate the effectiveness of the adversarial loss training 

by comparing our proposed Multi-Task AutoEncoder- 

Wasserstein Generative Adversarial Network-Gradient 

Penalty (MATAE-WGAN-GP) and a single generator 

based on MTAE.[20] To summarize, our contribution is to 

propose an architecture that combines MTAE and Wa-

sserstein GAN for separating speech and noise signals into 

one network. This structure combines the advantages of 

multi-tasking learning and GAN, and result in improving 

PER performance. We also propose a weights initiali-

zation method based on He[21] for Leaky Rectified Linear 

Unit (LReLU) and Parametric ReLU (PReLU). As a result, 

loss becomes more stable during learning process, thereby 

avoiding possible exploding gradients problem in a deep 

network.

In summary, by adopting GP loss function, our pro-

posed integrated model (MTAE-WGAN-GP) achieves 

lower PER over other state-of-the-art CNN and RNN for 

robust ASR system. This paper is organized as follows. In 

Section II, we present the proposed model structure and 

weights initialization. We then describe the experimental 

settings in Section III. The results are discussed and 

evaluated in Section IV and finally, conclusions are 

provided in Section V.

II. Proposed Approaches

2.1 Combining MTAE-WGAN-GP

Our proposed MTAE-WGAN-GP is composed of one 

generator and two critics as shown in Fig. 1. The generator 

is a fully connected MTAE and is intended to produce 

estimates of not only speech but also noise from noisy 

speech input. Speech estimate critic () and noise esti-

mate critic () are both fully connected DNNs, tasked 

with determining if a given sample is real ( and ) or fake 



Chao Yuan Kao and Hanseok Ko

한국음향학회지 제38권 제6호 (2019)

672

[ and ]. After training, we 

use a single MTAE based generator for our speech enhan-

cement task. The loss function for generator composed of 

adversarial loss and L1 loss is represented by




  ∼ 










 ∼ 
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where 
 and  are the estimated speech and 

the target clean speech respectively.  and  

are the estimated noise and the target noise respectively. 

λ, λ and 
 are hyper-parameters. By experiment, we 

set λ = 0.5, λ = 100 and 
 = 0.5 for the best per-

formance in our system. Our model adopts Wasserstein 

distance as a continuous and almost differentiable function 

within the range restricted by 1-Lipschitz constraint. The 

loss function for the critics are represented by
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The generator consists of 5 hidden layers and 1024 units 

were set in the first layer. Then, as described in[20] the 

denoising exclusive units, the shared units and the 

despeeching exclusive units for each layer from the 1st to 

the 5th are (0, 1024, 0), (256, 768, 256), (512, 512, 512), 

(768, 256, 768) and (1024, 0, 1024), respectively. 

Additionally, in[18] we modify 
  term in Eq. (9) to 


  






  with LReLU activation 

function as our weight initialization (subsection 2.2).

The critics feed as not only real and fake data but also 

the input data . The pairs are (, ) and (, 

) for speech estimate critic, and (, ) and (

, ) for noise estimate critic. The speech estimate critic 

network is composed of 4-layers with 1024, 768, 512, and 

256 units, while the noise estimate critic is composed of 

3-layers with 512 units per layer where both models use 

LReLU as activation function.

2.2 Initialization of weights for leaky and 

parametric rectified linear unit

Network parameter initialization plays a considerably 

significant part in the network training where inappro-

priate initialization could lead to poor results.[22] We 

briefly describe the initialization methods proposed by 

Xavier[23] and He,[21] and propose a modified initialization 

approach for LReLU and PReLU based activation. The 

method has been shown to be particularly effective when 

the number of network layers becomes large.

The response representation for DNN is:

 . (4)

 , (5)

where  and  are weight and bias matrix. f is the 

activation and we use l to index a layer.

The idea of He initialization[21] is based on Xavier 

initialization[23] in that it preserves the same variance of the 

response input throughout the layers. As in,[23] by ini-

Fig. 1. MTAE-WGAN-GP structure: blue and yellow 

parts are the denoising autoencoder. Gray and yellow 

parts are a despeeching autoencoder. The yellow 

parts in the middle are shared weights and biases by 

two autoencoders.
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tializing the elements of  to be independent and 

identically distributed (i.i.d.), we assume that  elements 

are i.i.d. and both  and  are independent from each 

other. Then we can obtain:

  , (6)

where, , , and  are random variables of elements in 

, , and , respectively.  is the number of nodes. By 

setting  to have zero mean, variance of the product of 

independent variables can be written as:

  
 . (7)

Since ReLU function is not linear and does not have a 

zero mean, by initializing  to have a symmetric 

distribution around zero and setting  to zero,  will 

also have a symmetric distribution with zero mean.[21] 

Thus, the expectation of xl can be written as: 
  




 , when ReLU is used as an activation func-

tion.[21] However, in the case of LReLU or PReLU being 

used as an activation function, 
  should be considered 

when  is less than zero.

Suppose the activation function is a linear transforma-

tion with slope α and zero intercept. Standard deviation (σ) 

and variance of  will become α and α respectively.

In the case of two different alphas from zero mean, such 

as LReLU, we can calculate the mean defined as:


  




 







  

(8)

where α
 is the slope for ≥, and α

 is the 

slope for   of LReLU or PReLU.

For LReLU or PReLU, 
 is equal to 1. Thus, we 

can rewrite it as:


  






    (9)

By substituting Eq. (9) into Eq. (7), we obtain:

 






  (10)

And with L layers, we get:



 ∏ 










.(11)

Finally, a sufficient condition is:







   ∀ (12)

Therefore, the proposed initialization method in Eq. (12) 

leads to zero-mean Gaussian distribution and σ equal to 

α

   where, b is initialized as zero. For 

the first layer ( = 1), the sufficient condition will be 

  , since there is no activation function 

applied to the input. The initial value of α
 for 

LReLU is set to 0.5 in this paper.

III. Experimental Setup

Two sets of experiments are conducted to evaluate our 

proposed model and initialization method. Firstly, we 

evaluate the effectiveness of proposed MTAE-WGAN- 

GP against state-of-the-art methods. Secondly, we com-

pare the initial output variance and convergence of our 

proposed initialization against Xavier and He initialization.

3.1 Dataset

For training the proposed model, we used the Texas 

Instruments/Massachusetts Institute of Technology (TIMIT) 

training dataset which contains 3696 utterances from 462 

speakers. The training utterance is augmented by 10 types 

of noise (2 artificial and 8 from YouTube.com: pink noise, 

red noise, classroom, laundry room, lobby, playground, 

rain, restaurant, river, and street). Each signal and back-
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ground noise added together with three Signal to Noise 

Ratio (SNR) levels (5 dB, 15 dB, and 20 dB). The obtained 

dataset for training the proposed model contains 9 % of 

clean speech to ensure the effectiveness of the model even 

in clean environment. Wen has shown the effectiveness of 

using synthetic noise during training for speech enhance-

ment task.[24]

TIMIT testing set that contains 192 utterances from 24 

speakers is corrupted by 3 types of unseen noise (café, pub, 

and schoolyard), collected from ETSI EG 202 396-1 

V1.2.2 (2008-09) with three different SNR levels (5 dB, 15 

dB, and 20 dB). The augmentation for the dataset is 

conducted using ADDNOISE MATLAB.[25]

3.2 Preprocessing

Kaldi toolkit is used for training the ASR model using a 

Hybrid System (Karel’s DNN) on a clean TIMIT Acoustic- 

Phonetic Continuous Speech Corpus training data. The 

sampling rate for the audio signals was at 16 kHz and 

features are extracted by means of short-time Fourier 

transform with window size of 25 ms and 10 ms window 

step. Here, we applied 23 Mel-filter banks, with Mel-scale 

from 20 Hz to 7800 Hz.

The proposed model (MTAE-WGAN-GP) and MTAE 

were trained by setting the data with concatenated 16 

contiguous frames of 13-dimensional MFCCs (13x16). 

The same data format was used to conduct both ex-

periments. All features are normalized per utterance within 

the range of [-1, 1]. All networks are trained using Root 

Mean Square Propagation (RMSprop) optimizer with a 

batch size of 100. For DDAE and MTAE architecture 

LReLU activation function is used except in the output 

layer which has no activation function.

IV. Results

4.1 Experiment 1

DDAE vs. MTAE vs. RNN vs. CNN vs. MTAE- 

WGAN-GP

We adopt L1 loss for all used training models. DDAE,[26] 

MTAE,[20] Recurrent MTAE (RMTAE) and Redundant 

Convolutional Encoder-Decoder (R-CED)[5] are used as 

baseline models to compare performance of the proposed 

model in terms of  PER. Hence, by incorporating a typical 

ASR model, performance is evaluated by measuring how 

well the system recognizes noisy speech after the speech 

enhancement. The RMTAE model consists of 3 LSTM 

layers followed by 2 fully-connected layers with 256 units 

and LReLU as activation function except for the output 

layer. To avoid exploding gradients problem, we use a 

gradient clipping from -1 to 1.[27] The results are reported 

in Table 1.

Table 1 reports the performance of these models. It can 

be observed that over three SNR conditions and three 

unseen noise, the proposed method consistently improved 

the recognition accuracy by 19.6 %, 8.1 %, 6.9 %, 3.6 %, 

and 1.8 % relative to non-enhanced features (None), 

Table 1. Performance comparison between non-en-

hanced features (None), DDAE, RMTAE (RNN), CNN 

(R-CED) and MTAE-WGAN-GP on 3 types of un-

seen noise with three SNR conditions.

SNR

PER (%)

Enhancement model Cafe Pub
School

yard
Average

20 dB

None 28.4 % 30.3 % 32.5 % 30.4 %

DDAE 27.8 % 27.6 % 28.3 % 27.9 %

MTAE 27.8 % 27.0 % 28.5 % 27.8 %

RMTAE (RNN) 26.0 % 24.8 % 26.2 % 25.7 %

R-CED (CNN) 27.6 % 25.6 % 27.0 % 26.7 %

MTAE-WGAN-GP 25.9 % 25.4 % 26.5 % 25.9 %

15 dB

None 34.9 % 36.5 % 39.9 % 37.1 %

DDAE 30.7 % 30.9 % 33.9 % 31.8 %

MTAE 30.7 % 30.2 % 33.2 % 31.4 %

RMTAE (RNN) 28.9 % 28.5 % 31.8 % 29.7 %

R-CED (CNN) 29.7 % 28.3 % 32.2 % 30.1 %

MTAE-WGAN-GP 28.9 % 28.1 % 30.4 % 29.1 %

5 dB

None 52.8 % 57.7 % 59.8 % 56.8 %

DDAE 45.5 % 49.1 % 49.9 % 48.2 %

MTAE 44.0 % 48.7 % 49.3 % 47.3 %

RMTAE (RNN) 42.5 % 47.2 % 48.3 % 46.0 %

R-CED (CNN) 42.4 % 47.0 % 49.3 % 46.2 %

MTAE-WGAN-GP 40.3 % 44.9 % 46.8 % 44.0 %
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DDAE, MTAE, R-CED (CNN) and RMTAE (RNN). 

Especially at low SNR scenarios, the improvement be-

comes more apparent. Additionally, we observe that at 

high SNR condition (20 dB) the RMTAE (RNN) has a 

competitive performance compare to our proposed me-

thod. However, performance is degraded obviously when 

SNR becomes lower (15 dB and 5 dB).

MTAE-WGAN-GP achieves lower PER compare to a 

single generator MTAE. This demonstrates the effecti-

veness of adversarial loss training is better than using L1 

loss alone. 

4.2 Experiment 2

Xavier initialization vs. He initialization vs. 

Our initialization

We adopt a 10 layer-MTAE to compare with Xavier[23] 

and He initialization.[21] By increasing units linearly, the 

denoising exclusive units, the shared units, and the de- 

speeching exclusive units are (0, 1200, 0) and (1200, 0, 

1200) for 1st and 10th layers, respectively. Fig. 2 shows the 

histograms of the output distribution in each layer before 

training. We can observe that as the number of layers 

increases, the variance in He initialization increases 

dramatically while the variance in Xavier initialization 

gradually decreases toward zero. However, our proposed 

initialization keeps the output distribution and variance 

steady through each layer, as shown in Fig. 3.

Next, we compare our proposed initialization with He 

and Xavier on a 25 layers MTAE using the obtained loss of 

the model. Fig. 4 shows the loss of convergence during 

training. We can observe that in training our proposed 

initialization converges faster and more stable than Xavier 

initialization, while He initialization cannot converge and 

can easily suffer from exploding gradient problem during 

training with deep network. This illustrates the advantage 

of using the proposed initialization when training a deep 

network with LReLU and PReLU.

Fig. 2. The illustration of the distribution of output 

values in each layer. From top to bottom are He, 

Xavier, and our proposed initialization, respectively.

Fig. 3. The initial output variance in each layer.
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V. Conclusions

We proposed MTAE-WGAN combination as an archi-

tecture that integrates MTAE with WGAN and demon-

strated improvement in ASR performance. Additionally, 

we proposed an initialization of weights for LReLU and 

PReLU and demonstrated that it converges faster with 

more stable than Xavier and He initialization. The results 

show that MTAE-WGAN-GP achieves 8.1 %, 6.9 %, 3.6 

%, and 1.8 % PERs improvement relative to DDAE, 

MTAE, R-CED (CNN) and RMTAE (RNN) model, 

respectively.
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