• Title/Summary/Keyword: golf Swing

Search Result 152, Processing Time 0.027 seconds

The Relationship between Trust, Satisfaction and Perceived Performance of Golf Device Data -Focused on the Golf Swing Analyzer- (골프 디바이스 데이터의 신뢰, 만족 및 인지된 경기력의 관계 -스윙 분석기 중심으로-)

  • Han, Jee-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.196-207
    • /
    • 2021
  • The purpose of this study is to investigate the relationship between trust, satisfaction and cognitive performance of golf participants in golf device, focusing on the swing analyzer. A total of 328 questionnaires were collected. Collected data were analyzed by SPSSWIN and AMOS program and frequency analysis, confirmatory factor analysis, validity test, correlation analysis and structural equation model analysis were performed. The result of the study were as follows. First, the trust of golf participants in golf device data has a positive effect on satisfaction. Second, the trust of golf participants in golf device data does not affect Perceived performance. Third, the satisfaction of golf participants in golf device data does not affect Perceived performance. In conclusion, golf participants' trust and satisfaction of the golf swing analyzer are irrelevant to the perceived performance. In conclusion, it was found that golf participants trusted the data presented through the golf device and obtained satisfactory results. However, in that it did not affect the perceived performance, golf participants can think that golf devices should be used to play golf rather than thinking that golf devices enhance their performance.

A Study on the Effective X-Factor (실질적인 X-Factor에 관한 고찰)

  • Chang, Jae-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.153-159
    • /
    • 2005
  • The purpose of this study was to investigate the Effective X-Factor in golf swing. The term X-Factor means the relative rotation of shoulders with respect to hips during the golf swing. To ascertain the Effective X-Factor that resulted in a high club head speed at impact six golfers' swing motions were videotaped and analyzed using three-dimensional techniques. The results can be summarized as follows. The standard deviations of the professionals' average club head speeds were higher than the amateurs'. This means that the professionals' swing skills were better than amateurs' in driving accuracy and consistency. As the club head speeds were increased gradually the X-Factors and the club head speeds had reached to the subjects' average club head speeds, but the X-Factors and the club head speeds were not increased above the subjects' average club head speeds. The X-Factor Stretch early in the down swing was existed and Professional stretched values were higher than the amateurs. In conclusion my research results suggested that the increase in Effective X-Factors had no relationship to the increase in club head speeds.

A Comparison of the Difference in the Golf Swing Motion According to Somatotypes (체형에 따른 골프 스윙 동작 비교)

  • Chung, Nam-Ju;Yoon, Hee-Joong;Baik, Young-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.33-49
    • /
    • 2002
  • This study was intended to provide basic materials for golf coaching by somatotype by analyzing and comparing the kinematic factors found in each somatotype at the time of golf swing. For this purpose, the somatotype was divided into endomorph, mesomorph and ectomorph in reference to the weight, height and upper arm circumference of each of nine professional golfers. Each of their swing motions was videotaped with the camcorder and their swing motion was analyzed by dividing it into 8 sections. The time required for the swing motion, the displacement of the center of the human body and the rotation angle of the upper body were calculated through the three-dimensional image analysis based on the DLT(Direct Linear Transformation). Based on the findings of this study, the following conclusion was drawn: The endomorphic golfers showed the longest required golf swing time, followed by the mesomorphic golfer and then the endomorphic golfer. The displacement of left-to-right movement was largest in the mesomorphic golfers, followed by the endomorphic golfers the up-to-down displacement was upward at the time of impact and that the endomorphic and mesomorphic golfers raised the sense of stability by maintaining an almost uniform height at the time of impact. As for the rotational angle of the upper body and the rotational angle of the thigh, the upper body and the thigh took a form of rotating earlier in the ectomorphic golfers at the time of impact, who showed a somewhat different characteristics compared to the endomorphic and mesomorphic golfers. It is necessary to investigate the movement of more fundamental forces in presenting the theory related to the kinematic characteristics of this swing by somatotype. Accordingly, it is thought that it is necessary to analyze the center of pressure(COP) using the ground counterforce in the future study.

A Study on Weight Transfer Sidehill Slopes during Goal Impact : Especially sidehill Slopes with ball above the feet (측면경사면에서의 목표 타격시 체중이동에 관한 연구 : 오르막경사를 중심으로)

  • Lee, Eui-Lin;Choi, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.1
    • /
    • pp.43-53
    • /
    • 2006
  • Among several movements that occurred upon a slope, golf swing is the most typical one because environmental conditions dynamically vary with many kinds of slopes. Some studies on the golf swing were performed about a weight transfer on flatland, however, there couldn't be seen any study about the weight transfer on slope elsewhere. Therefore, the purpose of this study was to provide quantified data to objectively test the coaching words and keys about the weight transfer at sidehill slope during goal impact EspeciaIly sidehill Slopes with ball above the feet. Four highschool golfer, who have average handy 5, were recruited for this study. Plantar pressure distribution and cinematographic data were collected during golf swing in the conditions of flatland, $5^{\circ}$, $10^{\circ}$ and $15^{\circ}$sidehill slope simultaneously. The two data were used to synchronize the two data later. The plantar regions under the foot were divided into 8 regions according to the directly applied pressure pattern of the subject to insole sensor. The 8 foot regions were hullux, medial forefoot, central forefoot, lateral forefoot, medial midfoot, lateral midfoot, medial heel, and lateral heel. And the plantar pressure data was also divided into four movement address, phases-backswing. downswing, and follow-through phases according to the percentage shown to the visual information of film data. Based on the investigations on public golf books and experiences of golfers, it was hypothesized by the authors in the early of this study that the steeper slopes are, the more weight loads on left foot that positions at the higher place. When observing the results of plantar pressure and vertical force curves according to the sidehill slope conditions, the hypothesis could be accepted.

A Comparative Study of Flight Distance in Golf Swing, After the Driver Shot (골프 드라이버 스윙시 볼의 종류에 따른 비거리분석)

  • Ryu, Ho-Yeong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • This study is examine and analysis of the most flying and run distance during swing three times with six balls between two amateurs and pro-golfers in golf field in Sungnam airport. During down swing, kinetics variances are velocity of club-head and balls, vertical angular velocity. this scientic data present amateur golfers with recognition of long flying distances for golf balls. Through this study, the conclusions are as follows. 1. Before impact the balls, The club-head velocity of amateur golfers and pro-golfers show 33.34 - 39.53m/s, 39.04 - 42.82m/s respectively during the down swing. But The club-head velocity, flight and Run distances comparative $K_1$ amateur golfer with the pro-golfer are similar. 2. After impact the balls, The balls velocity if amateur golfers show 53.04 - 61.57m/s, The pro-golfers show 62.32 - 63.4m/s respectively during the down swing. In case of $K_3$,$K_4$, After the impact balls velocity comparative The RA brand with other brand are similar, Flight and Run distance are difference. 3. After impact the balls, The balls velocity are difference to other brand but The long flight and Run distance arrange RA, BIG, TITL. 4. In the vertical flight angle of the ball after impact, amateur golfer showed 16.75 - $18.73^{\circ}$. The pro-golfer showed 15.03 - $16.04^{\circ}$. In the vertical flight angle of the balls ideal $12-13^{\circ}$, The long flight and Run distance approach In the vertical flight angle the balls $12-13^{\circ}$.

A Development of Golf Coaching using Human Motion Analysis (동작분석기법을 활용한 골프코칭시스템 개발)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.55-61
    • /
    • 2013
  • For years, many studies have mainly been investigated in a complicated human motion analysis. Recently, many motion analysis equipments have been studied and developed. Therefore, the more complex human movement analyses are possible, we have enabled us to perform more and more complicated human movement analyses. A Three-dimensional(3D) motion analysis on of the several methods is a useful tool for analyzing the human motion analysis. The purpose of this study was to develop the 3D human motion analysis using a kalman filter algorithm and a gyro sensor. The algorithm and sensor were used to human motion analysis with high-speed motion capture. In this study, the developed system will be adapted to facilitate golf swing analysis. Using the developed system, golfers and coaches who do not have advanced biomechanical knowledge can easily be used to their golf swing analysis. Future study is necessary for more practical and efficient area such as other sports industries, 3D game industries, rehabilitation training, etc..

Mechanical Analysis of golf driving stroke motion (골프드라이빙 스트로크시 역학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.1
    • /
    • pp.205-219
    • /
    • 2002
  • This research seeks to identify the plantar pressure distribution graph and change in force in connection with effective golf drive strokes and thus to help ordinary golfers have appropriate understanding on the moving of the center of weight and learn desirable drive swing movements. To this end, we conducted surveys on five excellent golfers to analyze the plantar pressure applied when performing golf drive strokes, and suggested dynamic variables quantitatively. 1) Our research presents the desire movements as follows. For the time change in connection with the whole movement, as a golfer raises the club head horizontally low above ground from the address to the top swing, he makes a semicircle using the left elbow joint and shaft and slowly turns his body, thus lengthening the time. And, as the golfer twists the right waist from the middle swing to the impact with the head taking address movement, and does a quick movement, thus shortening the time. 2) For the change in pressure distribution by phase, to strike a strong shot with his weight imposed from the middle swing to the impact, a golfer uses centrifugal force, fixes his left foot, and makes impact. This showed greater pressure distribution on the left sole than on the right sole. 3) For the force distribution graph by phase, the force in the sole from the address to halfway swing movements is distributed to the left foot with 46% and to the right foot with 54%. And, with the starting of down swing, as the weight shifts to the left foot, the force is distributed to the left sole with 58%. Thus, during the impact and follow through movements, it is desirable for a golfer to allow his left foot to take the weight with the right foot balancing the body. 4) The maximum pressure distribution and average of the maximum force in connection with the whole movement changed as the left (foot) and right (foot) supported opposing force, and the maximum pressure distribution also showed much greater on the left sole.

Effect of Intentional Draw & Fade Shots on Golf Swing Mechanics (의도적인 드로우 샷과 페이드 샷이 골프 스윙 역학에 미치는 영향에 관한 연구)

  • Sohn, Jee-Hoon;Ryue, Jae-Jin;Lee, Ki-Kwang;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.149-154
    • /
    • 2010
  • Intentional draw and fade shots could be good weapons for lowering golf score. But how to make such shots? To investigate deterministic variables generating different projectile paths of shots in square stance was the purpose of this study. Ten right-handed male collegiate athletes, showing 1.3 of averaged handicap, participated in this study. They were asked to intentionally perform three different shots such as the straight shot(control condition), draw shot, and fade shot. Swing path, pelvis rotation angle, thorax rotation angle and left forearm supination angle were determined for dependent variables on impact event at each trial. For statistical analysis one-way repeated measures ANOVA were used. The results showed that swing path was one of main factor making differences among three kind of shots. Straight shot vs. Draw shot, Straight shot vs. Fade shot and Draw shot vs. Fade shot showed differences on swing path. And left forearm supination angle revealed significant difference between draw shot and fade shot, showing a significant larger angle of draw shot than fade shot. No other significant difference was detected for the other variables. We found that the shot characteristics were influenced primarily by swing path and left forearm supination angle.

Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system (족저압력분포 측정장비를 이용한 골프 스윙시 족저압 분석)

  • Lee, Dong-Ki;Lee, Joong-Sook;Lee, Bom-Jin;Lee, Hun-Sik;Kim, Young-Jae;Park, Seung-Bum;Joo, Jong-Peel
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.75-89
    • /
    • 2005
  • D. K. LEE, J. S. LEE, B. J. LEE, H. S. LEE, Y. J. KIM, S. B. PARK, J. P. JOO. Plantar foot pressure analysis during golf swing motion using plantar foot pressure measurement system. Korean Journal of Sport Biomechanics, Vol. 15, No. 1, pp. 75-89, 2005. In this study, weight carrying pattern analysis and comparison method of four foot region were suggested. We used three types of club(driver, iron7, pitching wedge). This analysis method can compare between top class golfer and beginner. And the comparison data can be used to correct the swing pose of trainee. If motion analysis system, which can measure the swing speed and instantaneous acceleration at the point of hitting a ball, is combined with this plantar foot force analysis method, new design development of golf shoes to increase comfort and ball flight distance will be available. 1. Address acting, forces concentrated in rare foot regions and lateral foot of right foot. Back swing top acting, relatively high force occurred in medial forefoot region of left foot and forefoot region of right foot. Impact acting, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the lateral region and rarefoot region of left foot. 2. Forces were increased in address of right foot with clubs length increased. All clubs, back swing top acting, high force value observed in the lateral forefoot region of right foot. All clubs, in impact, high force value observed in the lateral rarefoot region of left foot and medial forefoot region of right foot. Finish acting, force concentration observed on the rarefoot region in driver and lateral foot region in iron on left foot. 3. Right foot forces distribution were increased in address, back swing top and left foot force distribution were increased in impact, finnish