• Title/Summary/Keyword: glycolysis

Search Result 243, Processing Time 0.023 seconds

INSULIN AND HYPOXIA INDUCE VEGF AND GLYCOLITIC ENZYMES VIA DIFFERENT SIGNALING PATHWAYS

  • Park, Youngyeon;Park, Hyunsung
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.199-199
    • /
    • 2001
  • Both hypoxia and insulin induce same target genes including vascular endothelial growth factor (VEGF), glycolitic enzymes and glucose transporters. However these two signals eventually trigger quite different metabolic pathways. Hypoxia induces glycolysis for anaerobic ATP production, while insulin increase glycolysis for lipogenesis and energy storage. Hypoxia-induced gene expression is mediated by Hypoxia-inducible Factorl (HIF-1) that consists of HIF-1 $\alpha$ and $\beta$ subunit.(omitted)

  • PDF

Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts (Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구)

  • Sim, Jae-Wook;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.485-489
    • /
    • 2017
  • Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1~4, the reaction time of 15~90 min and the reaction temperature of $250{\sim}325^{\circ}C$ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of $300^{\circ}C$ and the time of 30 min using 10 wt% $Cu/{\gamma}-Al_2O_3$ catalyst, with the PET and ethylene glycol ratio of 1 : 2.

Effect of the Addition of Pentaerythritol or Sorbitol to the Glycolysis of Waste Polyurethane on Prepared Polyol Functionalities and Polyurethane Mechanical Properties (폐 폴리우레탄의 해중합 시 첨가된 pentaerythritol과 sorbitol이 재생 폴리올의 작용기 및 폴리우레탄의 기계적 물성에 미치는 영향)

  • Myoung, Kyo Lim;Kim, Min Gyu;Ko, Jang Myoun;Chun, Jong Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1039-1042
    • /
    • 2008
  • In order to increase a functionality, OH value, for a recycled polyol prepared from the glycolysis reaction of a waste polyurethane rigid foam(PUR), the effect of an addition of pentaerythritol(PEN, functionality(f)=4) or sorbitol(SOR, f=6) to the its glycolysis reactor on the prepared polyol functionality and the mechanical properties of the polyurethane prepared using it was investigated. The OH values increased from 2.2 for a virgin to 2.8 for the recycled polyol. There was an increase in the mechanical properties including dimensional stability for PUR prepared using the recycled polyol, in which the increased OHs provided higher crosslinking density during PUR synthesis. In addition, the amount of the recycled polyol in the polyol system increased to from 8 to 20 wt% to give better mechanical properties to the PUR.

Gene Analysis Related Energy Metabolism of Leaf Expressed Sequence Tags Database of Korean Ginseng (Panax ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A, Meyer)의 잎 ESTs database에서 Energy 대사 관련 유전자 분석)

  • Lee Jong-Il;Yoon Jae-Ho;Song Won-Seob;Lee Bum-Soo;In Jun-Gyo;Kim Eun-Jeong;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.174-179
    • /
    • 2006
  • A cDNA library was constructed from leaf samples of 4-year-old Panax ginseng cultured in a field. 3,000 EST from a size selected leaf cDNA library were analyzed. The 349 of 2,896 cDNA clones has related with energy metabolism genes. The 349 known genes were categorized into nine groups according to their functional classification, aerobic respiration(48.4%), accessory proteins of electron transport and membrane associated energy conservation(17.2%), glycolysis and gluconeogenesis(3.4%), electron transport and membrane associated energy conservation(2.9%), respiration(2.0%), glycolysis methylglyoxal bypass(1.7%), metabolism of energy reserves(0.6%) and alcohol fermentation(0.3%).

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

Oncogene-Driven Metabolic Alterations in Cancer

  • Min, Hye-Young;Lee, Ho-Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.45-56
    • /
    • 2018
  • Cancer is the leading cause of human deaths worldwide. Understanding the biology underlying the evolution of cancer is important for reducing the economic and social burden of cancer. In addition to genetic aberrations, recent studies demonstrate metabolic rewiring, such as aerobic glycolysis, glutamine dependency, accumulation of intermediates of glycolysis, and upregulation of lipid and amino acid synthesis, in several types of cancer to support their high demands on nutrients for building blocks and energy production. Moreover, oncogenic mutations are known to be associated with metabolic reprogramming in cancer, and these overall changes collectively influence tumor-microenvironment interactions and cancer progression. Accordingly, several agents targeting metabolic alterations in cancer have been extensively evaluated in preclinical and clinical settings. Additionally, metabolic reprogramming is considered a novel target to control cancers harboring un-targetable oncogenic alterations such as KRAS. Focusing on lung cancer, here, we highlight recent findings regarding metabolic rewiring in cancer, its association with oncogenic alterations, and therapeutic strategies to control deregulated metabolism in cancer.

Preparation of the MnO2/Macroporous Carbon for PET Glycolysis

  • Choi, Bong Gill;Yang, MinHo
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.203-207
    • /
    • 2018
  • Plastic pollution is threatening human health and ecosystems, resulting in one of the biggest challenges that humanity has ever faced. Therefore, this study focuses on the preparation of macroporous carbon from biowaste (MC)-supported manganese oxide ($MnO_2$) as an efficient, reusable, and robust catalyst for the recycling of poly(ethylene terephthalate) (PET) waste. As-prepared $MnO_2/MC$ composites have a hierarchical pore network and a large surface area ($376.16m^2/g$) with a narrow size distribution. $MnO_2/MC$ shows a maximum yield (98%) of bis(2-hydroxyethyl)terephthalate (BHET) after glycolysis reaction for 120 min. Furthermore, $MnO_2/MC$ can be reused at least nine times with a negligible decrease in BHET yield. Based on this remarkable catalytic performance, we expect that $MnO_2$-based heterogeneous catalysts have the potential to be introduced into the PET recycling industry.

Identification and Characterization of Thermoplasma acidophilum 2-Keto-3-Deoxy-D-Gluconate Kinase: A New Class of Sugar Kinases

  • Jung, Jin-Hwa;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.535-539
    • /
    • 2005
  • The thermoacidophilic archaeon Thermoplasma acidophilum has long been known to utilize D-glucose via the non-phosphorylated Entner-Doudoroff (nED) pathway. We now report the identification of a gene encoding 2-keto-3-deoxy-D-gluconate (KDG) kinase. The discovery of this gene implies the presence of a glycolysis pathway, other than the nED pathway. It was found that Ta0122 in the T. acidophilum genome corresponded to KDG kinase. This enzyme shares no similarity with known KDG kinases, and belongs to a novel class of sugar kinases. Of the five sugars tested only KDG was utilized as a substrate.