• Title/Summary/Keyword: glutathione transferase

Search Result 884, Processing Time 0.026 seconds

Taurine Regulates Mitochondrial Function During 7,12-Dimethyl Benz[a]anthracene Induced Experimental Mammary Carcinogenesis

  • Vanitha, Manickam Kalappan;Priya, Kalpana Deepa;Baskaran, Kuppusamy;Periyasamy, Kuppusamy;Saravanan, Dhravidamani;Venkateswari, Ramachandran;Mani, Balasundaram Revathi;Ilakkia, Aruldass;Selvaraj, Sundaramoorthy;Menaka, Rajendran;Geetha, Mahendran;Rashanthy, Nadarajah;Anandakumar, Pandi;Sakthisekaran, Dhanapal
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2015
  • Objectives: The present study was undertaken to determine the modulatory effect of taurine on the liver mitochondrial enzyme system with reference to mitochondrial lipid peroxidation (LPO), antioxidants, major tricarboxylic acid cycle enzymes, and electron transport chain enzymes during 7,12-dimethyl benz[a]anthracene (DMBA) induced breast cancer in Sprague-Dawley rats. Methods: Animals in which breast cancer had been induced by using DMBA (25 mg/kg body weight) showed an increase in mitochondrial LPO together with decreases in enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)), non-enzymic antioxidants (reduced glutathione (GSH), vitamin C, and vitamin E), in citric acid cycle enzymes (isocitrate dehydrogenase (ICDH), alpha ketoglutarate dehydrogenase (alpha KDH), succinate dehydrogenase (SDH) and malate dehydrogenase (MDH)), and in electron transport chain (ETC) complexes. Results: Taurine (100 mg/kg body weight) treatment decreased liver mitochondrial LPO and augmented the activities/levels of enzymic, and non-enzymic antioxidants, tricarboxylic acid cycle enzymes and ETC complexes. Conclusion: The results of our present study demonstrated the chemotherapeutic efficacy of taurine treatment for DMBA-induced breast carcinomas.

Effects of Dietary Sea Tangle on Blood Glucose, Lipid and Glutathione Enzymes in Streptozotocin-Induced Diabetic Rats (다시마 분말이 당뇨 유발쥐의 혈당과 지질농도 및 항산화 효소계에 미치는 영향)

  • Cho, Young-Ja;Bang, Mi-Ae
    • Journal of the Korean Society of Food Culture
    • /
    • v.19 no.4
    • /
    • pp.419-428
    • /
    • 2004
  • The Purpose of this study was to investigate the effect of dietary sea tangle in diabetic rats treated with streptozotocin(STZ). Four groups of rats (Sprague-Dawley male rats,180-200g) were normal rats fed control diet(C), diabetic rats fed control diet(CD), normal rats fed sea tangl diet(T), and diabetic ,rats fed sea tangle diet(TD), diabetes was induced by single injection of streptozotocin(60mg/kg B.W.). High density lipoprotein(HDL) of T and TD group were higher than other groups(C and T groups). And the weekly change of blood sugar was decreased in the 3th and 4th weeks. But serum triglyceride (TG) of diabetic rats fed sea tangle diet(TD) was lower than diabetic rats fed control dlet(CD). Activity of hepatic microsomal Glucose 6-phosphatase(G6Pase) was significantly increased CD and TD groups higher than C and T groups. Hepateic glutathione S-transferase(GST of T, CD and TD groups were significantly lower than C group(p<0.05), glutathione peroxidase (GPX) of T and TD groups were significantly higher than C and CD groups(p<0.05).

Hepatic Detoxification and Antioxidant Activity in Sea-urchin Roe and Ethanol Extract of Roe (성게 부위별 및 그 추출물의 간 해독과 항산화 활성 효과)

  • Lee, Seung-Joo;Ha, Wang-Hyun;Choi, Hye-Jin;Cho, Soon-Yeong;Choi, Jong-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.428-436
    • /
    • 2010
  • Sea-urchins (Anthocidaris crassispina) are widely distributed in the East Sea of Korea. The aim of this study was to evaluate the hepatoprotective effects of sea-urchin roe on bromobenzene (BB)-induced liver damage in rats. The antioxidative and detoxifying properties of sea-urchin roe in BB-poisoned rat liver was examined by chemical analysis of serum aminotransferase (AST, ALT), glutathione S-transferase (GST), $\gamma$-glutamylcystein synthetase, glutathione reductase, epoxide hydrolase, amino-N-demethylase (AD), aniline hydrolase (AH) enzyme activity, as well as lipid peroxide and glutathione contents. Sea-urchin roe inhibited the increase of serum AST, ALT enzyme activity. Increasing lipid peroxide contents and AD and AH activities were significantly decreased in ethanol extract of sea-urchin roe. GST, $\gamma$-glutamylcystein synthetase, glutathione reductase and epoxide hydrolase enzyme activities increased in sea-urchin roe-fed group, compared with the BB-treated group. These results suggest that sea-urchin roe facilitates recovery from liver damage by enhancing antioxidative defense mechanisms and hepatic detoxication metabolism.

Protective Effects of Acetylbergenin against Carbon Tetrachloride Induced Hepatotoxicity in Rats

  • Lim, Hwa-Kyung;Kim, Hack-Seung;Kim, Seung-Hwan;Chang, Myung-Jei;Rhee, Gyu-Seek;Choi, Jong-Won
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.114-118
    • /
    • 2001
  • The present study was undertaken to investigate whether or not the hepatoprotective activity of acetylbergenin was superior to bergenin in carbon tetrachloride ($CCl_4$)-intoxicated rat. Acetylbergenin was synthesized by acetylating bergenin, which was isolated from Mallotus japonicus. The hepatoprotective effects of acetylbergenin were examined against $CCl_4$-induced liver damage in rats by means of serum and liver biochemical Indices. Acetylbergenin was administered orally once daily for 7 successive days, then a 0.5 ${m/kg}$ mixture of $CCl_4$in olive oil (1:1) was intraperitoneally injected at 12 h and 36 h after the final administration of acetylbergenin. Pretreatment with acetylbergenin reduced the elevated serum enzymatic activities of alanine/aspartate aminotransferase, sorbitol dehydrogenase and $\gamma$-glutamyltransferase in a dose dependent fashion. Acetylbergenin also prevented the elevation of hepatic malondialdehyde formation and depletion of glutathione content dose dependently in $CCl_4$-intoxicates rats. In addition, the decreased activities of glutathione S-transferase and glutathione reductase were restored to almost normal levels. The results of this study strongly suggest that acetylbergenin n has potent hepatoprotective activity against $CCl_4$-induced hepatic damage in rats by glutathione-mediated detoxification as well as having free radical scavenging activity. In addition, acetylbergenin doses of 50 ${mg/kg}$showed almost the same levels of hepatoprotection activity as 100 ${mg/kg}$ of bergenin, indicating that lipophilic acetylbergenin is more active against the antihepatotoxic effects of $CCl_4$ than those of the much less lipophilic bergenin.

  • PDF

Expression of Rat Hepatic Glutathione-S-Transferases by Benzoazoles (Benzoazole계 화합물이 glutathione-S-transferases의 유도발현에 미치는 영향)

  • 서경원;김연정;김태완;김효정;조민경;김상건
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.55-61
    • /
    • 1998
  • Glutathione-S-transferases (GSTs) detoxify electrophilic xenobiotics and reactive metabolites. Recently benzene-fused heterocycles have been shown to increase the total amount of hepatic GSTs in rats. Primarily this study aimed to determine the induction of GSTs by benzoazoles (BAs) including benzoxazole (BX), 2-methylbenzoxazole (M-BX), 2,5-dimethyl benzoxazole (D-BX), benzothiazole (BT), aminobenzothiazole (A-BT) and 2-mercaptobenzothiazole (M-BT) in rats. Hepatic cytosol and poly(A)$^+$ mRNA were prepared from rats after oral administration of BX, BT, M-BX, D-BX, A-BT and M-BT for 5 consecutive days at doses of 1 mmol/kg. Western immunoblot and northern blot analysis were conducted with rabbit anti-GST Ya, Yb$_1$, Yb$_2$, Yc antibodies and cDNA probes containing = 500 bps in the specific coding regions of Ya, Yb$_1$, Yb$_2$, Yc$_1$, and Yc$_2$, respectively. All BAs increased the amount of enzymes and mRNA levels of GSTs. BT was the most effective inducer of GSTs among the compounds examined in this study. Although A-BT and M-BT, the derivatives of BT, induced GSTs, these chemicals had lesser effect on induction of GSTs than BT. The derivatives of BX also induced less GSTs than the parent compound and the addition of methyl group to the benzene ring of BX reduced the induction of GSTs. BAs had better inductive effects on the class $\alpha$(Ya, Yc) than class $\mu$ GSTs (Yb$_1$, Yb$_2$). BAs enhanced mRNA levels of GSTs in parallel with the protein levels. These results indicate that 1) most of BAs induced various isozymes of GSTs, 2) the induction of GSTs appears to be correlated with the chemical structure of the derivatives, and 3) the expression of GST by BAs is presumably under the transcriptional regulation.

  • PDF

Effects of Boganhwan Decoction on the Liver Lipid Peroxide Content and Metabolic Enzyme System (노화과정(老化過程)의 흰쥐에서 보간환(補肝丸)이 간장(肝臟)의 대사효소계(代謝酵素系)에 미치는 영향(影響))

  • Cho, Han-sook;Oh, Min-suk;Song, Tae-won
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.711-726
    • /
    • 1999
  • Aging in the life form occurs due to a gradual progression of the body growth and degeneration. Morphological and functional changes in the body decreases the adaptation and prevention capacity leading into the decline of a life force. Various studies have been released to examine the anti-aging effects of herbal prescriptions. This experiment has chosen Boganhwan which is used for the deficiency of the liver function and studied the anti-aging factors by examining the biotransformation enzymes. The following results were obtained in this study: 1. Hepatic lipid peroxide activity was significantly suppressed in the experimental group treated with Boganhwan for 2 weeks at the dosage of 350mg/kg, while other dosage groups did not present much changes. 2. Insignificant changes were shown for the cytochrome P-450 level, aminopyrine demethylase, and aniline hydroxylase (AH) activities. Cytochrome P-450 do not appears to be a part of the detoxification scheme. 3. Boganhwan decoction treated group showed most significant increase of superoxide dismutase (SOD), catalase, superoxide, and glutathione activities at the concentration of 350mg/kg and 500mg/kg. 4. Glutathione S-transferase and glutathione made most significant increase at the decoction concentration of 350mg/kg and 500mg/kg compared to the control group. 5. Hepatic glutathione concentration, protein bound-SH, and nonprotein bound-SH made most significant increase at the decoction concentration of 350mg/kg and 500mg/kg compared to the control group. From the above results, Boganhwan decoction played an important role in eliminating foreign substances in the body excluding cytochrome P-450 enzyme system. Thus, Boganhwan decoction can provide substantial aid in preventing and treating senile related illnesses.

  • PDF

A Study on the Effects of Sungshimsan on the Heart Lipid Peroxide and Metabolic Enzyme System in Senescence Induced Rats (노화과정(老化過程)의 흰쥐에서 성심산(醒心散)이 심장(心臟)의 대사효소계(代謝酵素系)에 미치는 영향(影響))

  • Kwak, Jung-mun;Oh, Min-Suck;Song, Tae-won
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.625-641
    • /
    • 1999
  • Aging occurs as a part of maturation as the time progresses which manifests in the human body causing morphological and functional degeneration, eventually leading to death. This experimental study was conducted to investigate a herbal formula to fortify the heart with easy clinical applications. Sungshimsan was chosen to study its effects in heart lipid peroxide and metabolic enzyme system in senescence induced rats. After pre-treatment of Sungshimsan for 2 weeks at the dosage of A (100mg/kg), B (250mg/kg), C (350mg/kg), and D (500mg/kg), a lipid peroxide and metabolic enzyme system changes of the heart were meaured in 32 weeks old rats. The following results were obtained in this study: 1. The contents of lipid peroxide was significantly reduced in the experimental groups treated with greater than 2 weeks at 250mg/kg. 2. The enzymatic activity of cytochrome P-450, cytochrome b5, and NADPH-cytochrome P450 reductase were significantly decreased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 3. The activity of glutathione and glutathione S-transferase were significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 4. The activity of glutathione reductase and glutathione peroxidase were not influenced compared to the control group. 5. The activity of ${\gamma}$-glutamylcystein synthetase was significantly increased in the 250mg/kg, 350mg/kg, and 500mg/kg experimental groups. 6. The activity of enzymes detoxificatioon superoxide dismutase and catalase were not influenced compared to the control group. Summarizing above results suggest that the Sungshimsan has profound effects in the heart lipid peroxide, free radicals, and delaying the heart aging process. Further clinical researches and application can be anticipated on the topic of senility and gerontology.

  • PDF

Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats

  • Lu, Kuan-Hung;Weng, Ching-Yi;Chen, Wei-Cheng;Sheen, Lee-Yan
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2017
  • Background: Ginseng essence (GE) is a formulation comprising four medicinal and edible herbs including ginseng (Panax ginseng), American ginseng (Panax quinquefolius), lotus seed (Nelumbo nucifera), and lily bulb (Lilium longiflorum). This study was aimed at investigating the hepatoprotective effect of GE against carbon tetrachloride ($CCl_4$)-induced liver injury in rats. Methods: We treated Wistar rats daily with low, medium, and high [0.625 g/kg body weight (bw), 1.25 g/kg bw, and 3.125 g/kg bw, respectively] doses of GE for 9 wk. After the 1st wk of treatment, rats were administered 20% $CCl_4$ (1.5 mL/kg bw) two times a week to induce liver damage until the treatment ended. Results: Serum biochemical analysis indicated that GE ameliorated the elevation of aspartate aminotransferase and alanine aminotransferase and albumin decline in $CCl_4$-treated rats. Moreover, $CCl_4$-induced accumulation of hepatic total cholesterol and triglyceride was inhibited. The hepatoprotective effects of GE involved enhancing the hepatic antioxidant defense system including glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase. In addition, histological analysis using hematoxylin and eosin and Masson's trichrome staining showed that GE inhibited $CCl_4$-induced hepatic inflammation and fibrosis. Furthermore, immunohistochemical staining of alpha-smooth muscle actin indicated that $CCl_4$-triggered activation of hepatic stellate cells was reduced. Conclusion: These findings demonstrate that GE improves $CCl_4$-induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.

Antioxidant Action of Ginseng : An hypothesis (인삼의 항산화 작용)

  • Lee, D.W.;Sohn, H.O.;Lim, H.B.;Lee, Y.G.;Aprikian, A.G.;Aprikian, G.V.
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 1995
  • Antioxidant effect of Korean ginseng (Panax ginseng C.A. Meyer) was investigated in rats. Long-term administration of ginseng water extract protected the activity of liver cytosotic SOD, catalase and glutathione peroxidase from being significantly decreased with advancing age (p<0.05). It was more effective toward glutathione peroxidase than other antioxidant enzymes. However, the level of sulfhydryl compounds and its related enzymes such as glutathione reductase and glutathione-5-transferase was not significantly changed by the administration of ginseng. Liver microsomal formation of reactive oxygen species such as superoxide and hydrogen peroxide did not show a significant difference between two groups although it was slightly decreased with age, but lipid peroxidizability of microsomal membrane induced by a prooxidant was slightly lower in ginseng-treated rats. Interestingly, antioxidant capacity of plasma from ginseng treated rats on autooxidation of ok-brain homogenates was much higher than that of normal ones. However, resistance of RBC membrane against oxidative stress showed a similar tendency. The content of serum TBA reactive substances lowered consistently in the rats treated with r ginseng at all corresponding age and a significant difference between two groups was found at 24 months of age (p<0.05). Ginseng extract protected lipid peroxidation in brain and liver. This protection was more effective in the stressed rats imposed by immobilization than normal ones. In conclusion, ginseng water extract protected the age related deterioration of major antioxidant enzymes, and this effect was more striking with increasing duration of treatment. This comprehensive antioxidant action of ginseng seems to be bra certain action of ginseng other than a direct antioxidant action, which might be a long term normalizing effect through the harmony of various components.

  • PDF

The Mechanism of Nephrotoxicity Formation of Methotrexate in STZ-Induced Hyperglycemic Rats (Streptozotocin 유도 당뇨성 흰쥐에서 methotrexate의 신독성 생성기전에 관한 연구)

  • Kim Seok-Hwan;Kim Yeo-Jeong;Lee Joo-Yeon;Kang Hye-Ok;Lee Hang-Woo;Choi Jong-Won
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.259-265
    • /
    • 2006
  • This study is investigated the effect on mechanism of nephrotoxicity formation of methotrexate(MTX) by hyperglycemic by streptozotocin(STZ). MTX was injected daily at two doses of 3, 6 mg/kg for 1 week in STZ-induced hyperglycemic rats. Activities of BUN, creatinine and LDH were significantly increased by treatment with MTX in STZ-induced diabetic group when compared to MTX treatment group in normal rats' Renal lipid peroxide content and activities of cytosolic enzyme were significantly increased in the treatment of MTX in diabetic group. The concentration of glutathione and glutathione biosynthesis enzymes were decreased by treatment with MTX in STZ-induced diabetic group. These results suggest that nephrotoxicity of MTX in STZ-induced hyperglycemic rat was caused by activation of renal metabolizing enzymes in cytosol and decrease of glutathione concentration.