• Title/Summary/Keyword: glucosamine

Search Result 255, Processing Time 0.031 seconds

Effects of Oligosaccharide and Pseudomonas sp. on the Growth of Potted Kalanchoe During Summer Season (천연올리고당 및 Pseudomonas속 길항미생물의 단독 및 혼용처리가 고온기 칼랑코에 생육촉진에 미치는 영향)

  • Kim, Seong-Ja;Han, Tae-Ho;Chung, Soon Ju
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.207-216
    • /
    • 2003
  • Most severe problem in production of potted kalanchoe during summer season is retardation of growth caused by high temperature. The aim of this experiment was aimed to investigate the effects of natural products such as algin-oligosacchride and glucosamine oligosaccharide, plant growth promoting rhizovacteria such as Pseudomonas sp. B and Pseudomonas sp. D2, and AG-solution on the growth of potted kalanchoe under the different root zone temperature in the greenhouse. Growth characteristics in terms of plant height, leaf length, leaf width, leaf area, leaf weight, fresh weight of shoot and root and root length were recorded under three root zone temperatures (25$^{\circ}C$, 30$^{\circ}C$, 35$^{\circ}C$). In 25$^{\circ}C$, the mixed treatment of Pseudomonas sp. B and glucosamine oligosaccharide resulted in the best growth in terms of plant height, leaf area and root weight. In 3-$^{\circ}C$, glucosamine oligosaccharide treatment gave fair result in plant height and leaf weight, but the mixed treatemtn of Pseudomonas sp. D2 and algin-oligosaccharide showed better growth on leaf area and root weight. In 35$^{\circ}C$, the mixed treatment of Pseudomonas sp. B and glucosamine oligosaccharide could greatly improve the plant height, leaf area, leaf weight and root weight. These results demonstrated that the mixed treatment of natural products and microorganisms could overcome the detrimental effects caused by high temeprature in the production of kalanchoe.

Expression of Glucosamine-6-Phosphate Deaminase (GNPDA) in Mouse Ovary (생쥐 난소에서 Glucosamine-6-Phosphate Deaminase (GNPDA)의 발현)

  • Gye, Myung-Chan
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • The expression of glucosamine-6-phosphate deaminase (GNPDA) was examined in mouse ovary from neonate to aduit. In western blot, band of Mr. 31 kDa antigen sharply increased 2 weeks after birth onward. In irmmunostaining of the adult ovary, GNPDA expression was constitutive in the theca and interstitial cells. However, expression in the granulosa cells was different according to folliculogenesis. Cytoplasm of the oocyte of some primary follicle showed positive signal but not in the antral follicle. Granulosa cells of antral follicles showed no visible sign of GNPDA expression. In the corpora lutea, the signal intensity in granulosaluteal cells increased according to luteal development and became the highest in the luteolytic phase. In summary, the differential expression of GNPDA was found in follicle cells according to folliculogenesis. It suggests that GNPDA might be involved in tissue remodeling in mouse ovary.

  • PDF

A study on several new glycoproteins isolated from crude soybean hemagglutinin (Soybean Hemagglutinin의 정제중(精製中) 분리(分離)되는 Glycoprotein에 관(關)한 연구(硏究))

  • Kim, S.I.;Lee, C.Y.
    • Applied Biological Chemistry
    • /
    • v.12
    • /
    • pp.1-5
    • /
    • 1969
  • 1. The purified soybean hemagglutinin isolated from Korean soybean through the calcium phosphate column chromatography was found to contain mannose (4.9%) and glucosamine (1.1%) added to the protein portion. 2. The fractions I,II,III, the impurities accompanied by hemagglutinin during the final purification were proved to be new plant glycoproteins that were seemingly paper electrophoretically homogeneous and had the same mobility. 3. The carbohydrate and nitrogen contents of I,II,III were 4.5%, 1.13%, 1.1% in mannose, 0.5%, 1.2%, 1.22% in glucosamine and 12.8%, 15.5%, 13.9% in nitrogen respectively.

  • PDF

Development of an Isotope-Dilution Flow-Injection Electrospray/ Mass Spectrometric Method for the Accurate Determination of Glucosamine in Pharmaceutical Formulation

  • Kim, Gui-Nam;Kim, Byung-Joo;Ahn, Seong-Hee;Hwang, Eui-Jin;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.363-367
    • /
    • 2009
  • An isotope-dilution flow-injection electrospray/mass spectrometric method was developed for the accurate determination of glucosamine contents in pharmaceutical formulations. Samples were extracted by methanol. After spiking glucosamine-1-$^{13}C_1$ as an internal standard, the extracts were then analyzed by flow-injection ESI/MS in a selected ion monitoring (SIM) mode to detect [M+H]$^+$ ions of the analyte and its isotope analogue at m/z 180 and m/z 181, respectively. Confirmatory measurements were made by selectively monitoring the collisionally induced dissociation channels of m/z 180 $\rightarrow$ m/z 72 and m/z 181 $\rightarrow$73, respectively, to test the possibility of bias in the SIM method due to matrix interferences, but any significant bias in the SIM mode was not observed. Repeatability and reproducibility studies showed that the flow-injection ESI/MS method is a reliable and reproducible method which can provide a typical method precision of 1.0 %. Other results for the method validation are reported.

Enzymatic Deacetylation of Chitin by Extracellular Chitin Deacetylase from a Newly Screened Mortierella sp. DY-52

  • Kim, Young-Ju;Zhao, Yong;Oh, Kyung-Taek;Nguyen, Van-Nam;Park, Ro-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.759-766
    • /
    • 2008
  • Among more than a hundred colonies of fungi isolated from soil samples, DY-52 has been screened as an extracellular chitin deacetylase (CDA) producer. The isolate was further identified as Mortierella sp., based on the morphological properties and the nucleotide sequence of its 18S rRNA gene. The fungus exhibited maximal growth in yeast peptone glucose (YPD) liquid medium containing 2% of glucose at pH 5.0 and $28^{\circ}C$ with 150 rpm. The CDA activity of DY-52 was maximal (20 U/mg) on the 3rd day of culture in the same medium. The CDA was inducible by addition of glucose and chitin. The enzyme contained two isoforms of molecular mass 50 kDa and 59 kDa. This enzyme showed a maximal activity at pH 5.5 and $60^{\circ}C$. In addition, it had a pH stability range of 4.5-8.0 and a temperature stability range of $4-40^{\circ}C$. The enzyme was enhanced in the presence of $Co^{2+}$ and $Ca^{2+}$. Among various substrates tested, WSCT-50 (water-soluble chitin, degree of deacetylation 50%), glycol chitin, and crab chitosan (DD 71-88%) were deacetylated. Moreover, the CDA can handle N-acetylglucosamine oligomers $(GlcNAc)_{2-7}$.

Studies on Glycolipid in Bacteria -Part III. Biosynthesis of Glycolipid by Cell Free Extract of Selenomonas ruminantium- (세균(細菌)의 당지질(糖脂質)에 관(關)한 연구(硏究) -제3보(第三報) Selenomonas ruminantium에 의(依)한 당지질(糖脂質)의 in vitro 생합성(生合成)-)

  • Kim, Kyo-Chang
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.138-142
    • /
    • 1974
  • Biosynthesis of glycolipid from glucosamine and $C_{13:0}$ fatty acid was attempted using an enzyme preparation which was extracted from Selenomonas ruminantium grown in lactic acid medium by means of ultrasonication, and with cofactors of ATP, Co A, $Mg^{++}$, and UTP. The results are summarized as follows: 1. The rate of synthesis of glycolipid from $^{14}C-glucosamine$ and tridecyl CoA by an enzyme from Selenomonas ruminantium was promoted by the presence of co-factors, ATP, Mg, and UTP. 2. The rate of incorporation of $^{14}C-glucosamine$ into glycolipid by the centrifugal fraction of bacterial preparation was the highest in the 105,000 g supernatant fraction, indicating about twice the enzyme activity as the 6,000 rpm supernatant fraction. 3. The biosynthesis of glycolipid from $^{14}C-glucosamine$ and tridecyl-CoA by the crude enzyme of the 105,000 g supernatant fraction of Selenomonas ruminantium cell preparation proceeded the most part of it in 30 minutes and completed in an hour.

  • PDF

Enzymatic Characterization and Classifications of Chitosanases (키토산분해효소의 분류와 효소적 특성)

  • Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Kil-Yong;Park, Zee-Yong;Park, Ro-Dong
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.16-22
    • /
    • 2005
  • Many chitosanases, glycosyl hydrolases that catalyze the degradation of chitosan, have been found in microorganism. In this paper, classification of the enzyme has been described, which is based on the amino acid sequence (families) and splitting patterns (subclasses). Glycohydrolytic mechanisms such as inversion and retention of the substrate anomer are also discussed in context of the families. Interrelationship among the primary structure, clan, anomeric conversion and the splitting patterns has been suggested. In addition, advanced definition of chitosanase was introduced through the investigation of enzymatic products from partially N-acetylated chitosan as a substrate.

Effects of Poly-N-acetyl Glucosamine(pGlcNAc) Patch on Wound Healing in db/db Mouse (Poly-N-acetyl-glucosamine이 당뇨병 쥐에서 창상치료에 미치는 영향)

  • Yang, Ho Jik;Yoon, Chi Sun
    • Archives of Plastic Surgery
    • /
    • v.35 no.2
    • /
    • pp.121-126
    • /
    • 2008
  • Purpose: Poly-N-acetyl glucosamine(PGlcNAc) nanofiber-based materials, produced by a marine microalga, have been characterized as effective hemostatic and angiogenic agents. The similarity between PGlcNAc patch and the natural extracellular matrix allows it to support new healthy tissue growth in an injured area and to encourage fluid absorption. In this study, we hypothesized that a poly-N-acetyl glucosamine fiber patch(PGlcNAc patch) may enhance wound healing in the db/db mouse. Methods: PGlcNAc patches were applied on one square centimeter, full-thickness, skin wounds in the db/db mouse model. Wounds(n=15 per group) were dressed with a PGlcNAc nanofiber patch for 1 hour(1 h), 24 hours(24 h) or left untreated(NT). After the application time, patches were removed and wounds were allowed to heal spontaneously. The rate of wound closure was evaluated by digital analysis of unclosed wound area in course of time. At day 10, wounds(n=7 per group) were harvested and quantified with immunohistochemical markers of proliferation(Ki-67) and vascularization (platelet endothelial cell adhesion molecule, PECAM-1). Results: Wounds dressed with PGlcNAc patches for 1 hour closed faster than control wounds, reaching 90% closure in 16.6 days, nine days faster than untreated wounds. Granulation tissue showed higher levels of proliferation and vascularization following 1 h treatment than the 24 h and NT groups. In addition to its hemostatic properties, the PGlcNAc material also appears to accelerate wound closure in healing-impaired genetically diabetic mice. Conclusion: This material, with its combination of hemostatic and wound healing properties, has the potential to be effective agent for the treatment of complicated wounds.

Glucosamine increases vascular contraction through activation of RhoA/Rho kinase pathway in isolated rat aorta

  • Kim, Do-Hyung;Seok, Young-Mi;Kim, In-Kyeom;Lee, In-Kyu;Jeong, Seong-Yun;Jeoung, Nam-Ho
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.415-420
    • /
    • 2011
  • Diabetes is a well-known independent risk factor for vascular disease. However, its underlying mechanism remains unclear. It has been reported that increased influx of the hexosamine biosynthesis pathway (HBP) induces O-GlcNAcylation of proteins, leading to insulin resistance. In this study, we determined whether or not O-GlcNAc modification of proteins could increase vessel contraction. Using an endothelium-denuded aortic ring, we observed that glucosamine induced OGlcNAcylation of proteins and augmented vessel contraction stimulated by U46619, a thromboxane $A_2$ agonist, via augmentation of the phosphorylation of MLC20$MLC_{20}$, MYPT1(Thr855), and CPI17, but not phenylephrine. Pretreatment with OGT inhibitor significantly ameliorated glucosamine-induced vessel constriction. Glucosamine treatment also increased RhoA activity, which was also attenuated by OGT inhibitor. In conclusion, glucosamine, a product of glucose influx via the HBP in a diabetic state, increases vascular contraction, at least in part, through activation of the RhoA/Rho kinase pathway, which may be due to O-GlcNAcylation.

Toxicologic Review of the Dietary Supplements Glucosamine and Chitosan (건강 보조 식품의 중독학적 관점에서의 고찰: 글루코사민, 키토산)

  • You, Ji-Young
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Recently, westernized diet and lifestyles have led to obesity and various adult diseases resulting in a negative influence on the quality of life. There has been an increased interest in choosing proper diet and regular exercise in order to lead a healthy life. The number of people looking for dietary supplements has increased steadily. Dietary supplements are products intended to help maintain or improve the health of consumers. However, if customers take dietary supplements excessively, they may be harmful due to side effects, misuse, abuse and overdose. I performed a toxicologic review of the dietary supplements, glucosamine and chitosan, which are widely used in the country in order to provide the proper understanding of safety of these products.

  • PDF