Effects of Oligosaccharide and Pseudomonas sp. on the Growth of Potted Kalanchoe During Summer Season

천연올리고당 및 Pseudomonas속 길항미생물의 단독 및 혼용처리가 고온기 칼랑코에 생육촉진에 미치는 영향

  • Kim, Seong-Ja (Faculty of Applied Plant Science, Chonnam National University) ;
  • Han, Tae-Ho (Faculty of Applied Plant Science, Chonnam National University, Insti. of Ag. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Chung, Soon Ju (Faculty of Applied Plant Science, Chonnam National University, Insti. of Ag. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
  • 김성자 (전남대학교 농업생명과학대학 응용식물학부) ;
  • 한태호 (전남대학교 농업생명과학대학 응용식물학부, 전남대학교 농업생명과학대학 농업과학기술연구소) ;
  • 정순주 (전남대학교 농업생명과학대학 응용식물학부, 전남대학교 농업생명과학대학 농업과학기술연구소)
  • Published : 2003.12.01

Abstract

Most severe problem in production of potted kalanchoe during summer season is retardation of growth caused by high temperature. The aim of this experiment was aimed to investigate the effects of natural products such as algin-oligosacchride and glucosamine oligosaccharide, plant growth promoting rhizovacteria such as Pseudomonas sp. B and Pseudomonas sp. D2, and AG-solution on the growth of potted kalanchoe under the different root zone temperature in the greenhouse. Growth characteristics in terms of plant height, leaf length, leaf width, leaf area, leaf weight, fresh weight of shoot and root and root length were recorded under three root zone temperatures (25$^{\circ}C$, 30$^{\circ}C$, 35$^{\circ}C$). In 25$^{\circ}C$, the mixed treatment of Pseudomonas sp. B and glucosamine oligosaccharide resulted in the best growth in terms of plant height, leaf area and root weight. In 3-$^{\circ}C$, glucosamine oligosaccharide treatment gave fair result in plant height and leaf weight, but the mixed treatemtn of Pseudomonas sp. D2 and algin-oligosaccharide showed better growth on leaf area and root weight. In 35$^{\circ}C$, the mixed treatment of Pseudomonas sp. B and glucosamine oligosaccharide could greatly improve the plant height, leaf area, leaf weight and root weight. These results demonstrated that the mixed treatment of natural products and microorganisms could overcome the detrimental effects caused by high temeprature in the production of kalanchoe.

고온기 분식 칼랑코에 재배에 있어 문제는 고온 스트레서에 의한 생장의 억제로, 본 연구는 지하부 및 지상부의 생장을 촉진을 시킬 수 있다고 알려진 근권 생장촉진미생물(Pseudomonas sp. B와 Pseudomonas sp. D2)을 선발하여 사용하였으며 천연물로서는 alginoligosaccharide와 glucosamine oligosaccharide를 사용하였다. 또한 이들의 AG-용액과 단일 및 복합 처리하여 재배 온도차이를 부여한 경우 칼랑코에의 생장에 미치는 영향을 조사하였다. 상이한 지하부 온도조건은 25$^{\circ}C$, 30$^{\circ}C$ 및 35$^{\circ}C$로 처리하여, 2주후 초장, 엽장,엽폭, 엽면적, 엽중, 지상부 생체중, 근장, 근중을 조사하였다. 25$^{\circ}C$처리구에서는 초장, 엽면적, 엽중, 근중 모두 Pseudomonas sp. B와 glucosamine oligosaccharide를 혼합한 처리구가 가장 높았고, 30$^{\circ}C$의 경우 초장과 엽중은 glusosamine oligosaccharide처리에서, 엽면적과 근중은 Pseudomonas sp. D2와 algin-oligosaccharide를 처리구에서 가장 좋은 생장 효과를 나타내었다. 35$^{\circ}C$의 경우는 초장, 엽면적, 엽중, 근중 모두 Pseudomonas sp. B와 glucosamine oligosaccharide를 혼합한 처리구에서 효과가 컸다. 이상의 결과로 보아 고온기 칼랑코에의 분화 재배시 문제가 되는 생장억제현상은 천연제재와 미생물 제재를 혼합처리 함으로써 크게 개선시킬 수 있었다.

Keywords

References

  1. Adams, P. 1988. Some effects of root temperature on the growth and nutrient uptake of tomatoes in NFT. Proceedings of Int'l Congr. on Soilless Culture:81-111
  2. Baker, R. and F.M. Scher. 1986. Enhancing the activity of biological control agents. In Innovative Approaches to Plant Diesase Control (I. Chet, Ed.). Wiley, New york, pp. 1-18
  3. Brown, M.E. 1974. Seed and root bacterization. Annu. Rev. Phytopathol.
  4. Cooper, A.J. 1973. Root temperature and plant growth. Commonwealth Agr. Bureaux, Slough, England
  5. Cooper, A.J. 1975. Crop production in recirculation nutrient solution. Scientia Hort. 3:252-258
  6. Defreitas, J.R., M.R. Banerjee and J.J. Germida. 1997. Phosphate - solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola(Brassica napus L. J. Biol. Fertility of Soils 24(4):358-364 https://doi.org/10.1007/s003740050258
  7. Gosselin, A., F.P. Chalifour, M.J. Trudel, and G. Gendron. 1984. Influence de la temperature du substrat et de Ia fertilisation azotee sur la croissance, Ie developpement, Ia teneur en azote et l'activite de la nitrate reductase chez Ia tomate. Can. J. Plant Sci. 64:181-191 https://doi.org/10.4141/cjps84-023
  8. Gosselin, A. and M.J. Trudel. 1986. Root zone temperature effects on pepper. J. Amer. Soc. Hort. Sci. 111(2):220-224
  9. Hicklenton, P.R. and M.S. Wolynetz. 1987. Influence of light and dark period air temperatures and root temperature on growth of lettuce in nutrient flow systems. J. Amer. Soc. Hort. Sci. 112(6):932-935
  10. Lesinger, T. and R. Maragraff. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Rev. 43:422-442
  11. Lifshitz, R., J.W. Kloepper., M. Kozlowski., C. Simonson., J. Carson., E.M. Tipping. and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedling by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390-395 https://doi.org/10.1139/m87-068
  12. Lin, W., Y. Okon. and R.W.F. Hardy. 1993. Enhanced mineral uptake by Zeamays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl. Environ. Microbiol. 45:1775-1779
  13. Lynch, J.M. 1982. Interaction between bacteria and plants in the root environment. Soil. Appl. Bacteriol. Symp. Ser. 10:1-23
  14. Martin, J.K. 1973. The influence of rhizosphere microflora on the availability of 32p-myoinositol hexophosphate phosphorus to wheat. Soil Biol. Biochem
  15. Morgenstern, E. and Y. Okon. 1987. Promotion of plant growth and $NO_3^-$ and $Rb^+$ uptake in Sorghum bieolor x Sorghum sudanense inoculated with Azospirilium brasilense Cd. Arid Soil Res. Rehabil. 1:211-217 https://doi.org/10.1080/15324988709381148
  16. Nielsen, K.F. 1974. Roots and root temperatures. In E.W. Carson(ed.). The plant root and its environment. University Press of Virginia, Charlottesville, va. p.293- 334
  17. Nielands, J.E. 1981. Absorption and transport in microorganisms. Anne. Rev. Nutr. 1:27-46 https://doi.org/10.1146/annurev.nu.01.070181.000331
  18. Nielands, J.B., Leong. 1986. Iron absorption and transport in microorganisms. Annu. Rev. Nutr. 1:27-46 https://doi.org/10.1146/annurev.nu.01.070181.000331
  19. Okon, Y., E. Fallik., S. Sarig., E.Yahalom., and S. Tal.1988. Plant growth promoting effects of Azospilrillum. In Nitrogen Fixation. Gustav Fischer, Stuttgart, West Germany, 741-746
  20. Orlikowski, L. 1987. Biological control of fusarium wilt of carnation. Acta Hortic. 216: 101-104
  21. Richards, S.J., R.M. Hagen, and T.M. McCalls. 1952. Soil temperature and plant growth. In B.T. Shaw(ed.). Agronomy 2. Soil physical conditions and plant growth. Academic Press. New York. p. 303-480
  22. Rykbost, K.A., L. Boersma, H.J. Mack, and W.E. Schmisseur. 1975. Yield response to soil warming: Vegetable crop. Agron. J. 67:738-743
  23. Sarig, S., Y. Kapulnik. and Y. Okon. 1988. Improvement of the water status and yield of field-growth grain sorghum(Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agric. Sci. (Cantab.) 110:271-277 https://doi.org/10.1017/S0021859600081296
  24. Schreiner, R.P., K.L. Mihara., H. Mcdaniel and G.J. Bethlenfalvay. 1997. Mycorrhizal fungi influence plant and soil functions and interactions. Plant and Soil 188(2):199-209 https://doi.org/10.1023/A:1004271525014
  25. Schroth, M.N. and .J.G. Hancock. 1982. Disease-suppressive soil and root-colonizing bacteria. Science 216(25) 1376-1381 https://doi.org/10.1126/science.216.4553.1376
  26. Shabayev, V.P., V.Y. Smolin, and V. A. Mudrik. 1996. Nitrogen fixation and $CO_2$exchange in soybeans(Glycine max L.) inoculated with mixed cultures of different microorganisms. Biol. Fertility of Soils 23(4):425-430 https://doi.org/10.1007/BF00335917
  27. Tachibana, S. 1987. Effect of root temperature on the rate of water and nutrient absorption in cucumber cultivars and figleaf gourd. J. Japan. Soc. Hort. Sci. 55(4):461-467 https://doi.org/10.2503/jjshs.55.461
  28. Tachibana, S. 1989. Respiratory response of detached roots to lower temperature in cucumber and figleaf gourd grown at $$$20^\circ$$$C root temperature. J. Japan. Soc. Hort. Sci. 58:333-337 https://doi.org/10.2503/jjshs.58.333
  29. Van Peer, R. and B. Schippers. 1989. Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizosphere microbial development in hydroponic cultures. Can. J. Microbiol. 35:456-463 https://doi.org/10.1139/m89-070
  30. Vogt, W. and H. Buchenaver. 1997. Enhancement of biological control by combination of antagonistic fluorescent Pseudomonas strains and resistance induces against damping off and powdery mildew in cucumber. J. Plant Diseases and Protection 104(3 ):272-280
  31. Whipps., J.M. 1997. Development in the biological control of soil-borne plant pathogens. Advances in Botanical Research Incorporating Advances in Plant Pathology 26: 1-134