• 제목/요약/키워드: glucan synthase

검색결과 27건 처리시간 0.022초

Cloning and developing mutants of E.coli BL21(DE)/CrdS-F and E.coli BL21(DE)/CrdS-C for producing soluble glucan

  • Yin, Chun-Ji;Min, Kyoung-Du;Lee, Jung-Heon
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.663-667
    • /
    • 2005
  • Water-soluble glucan was produced by mutants of E. coli BL21(DE)/CrdS-F and E. coli BL21(DE)/CrdS-C in a fermentor. Mutants of E. coli BL21(DE)/CrdS-F which has putative ${\beta}-1,3-glucan$ synthase catalytic subunit (gi:40556679) gene and E. coli BL21(DE)/CrdS-C which contains the active catalytic domain of partial curdlan synthase gene. The molecular weight of water-soluble glucan was analysed with HPLC.

  • PDF

베타-1,3-글루칸 생합성에 관여하는 Saccharomyces cerevisiae 유전자의 클로닝 (Cloning of a Gene Involved in Biosynthesis of ${\beta}-1,3-glucan$ in Saccharomyces cerevisiae)

  • 진은희;이동원;김진미;박희문
    • 한국균학회지
    • /
    • 제23권2호통권73호
    • /
    • pp.129-138
    • /
    • 1995
  • 비허용온도인 $37^{\circ}C$에서 삼투감수성을 보이며 베타-1,3-글루칸 합성능이 현저히 손상된 Saccharomyces cerevisiae mutant(LP353)를 YCp50으로 제조한 yeast genomic library로 형질전환시킨 후, 콜로니 자기방사법으로 형질전환체의 선별을 시도한 결과, LP353의 베타-1,3-글루칸 합성능을 부분적으로 회복시켜 주는 약 8.5-kb 크기의 DNA 절편을 클로닝하는데 성공하였다. 클로닝된 8.5-kb의 DNA 절편은 copy 수에 무관하게 LP353의 또 다른 표현형질인 온도의존적 삼투감수성은 회복시켜 주지 못하였으나, 세포벽의 베타-1,3-글루칸 함량과 베타-1,3-글루칸 분해효소인 ${\beta}-glucanase$에 대한 내성은 copy수에 무관하게 증가시켜 주었다. 한편, 8.5-kb의 DNA 절편은 $37^{\circ}C$의 삼투안정제가 첨가된 액체배지에서 잘 자라지 못하는 LP353의 돌연변이 형질을 회복시켜 야생형의 수준에 근접하는 생장양상을 보여 주었다. 이상의 결과로 클로닝된 8.5-kb 크기의 DNA 절편은 S. cerevisiae의 베타-1,3-글루칸 생합성에 관여하는 유전자의 하나인 BGS2를 포함하고 있는 것으로 보여지며, subcloning을 통한 기능부위 분석 결과, 4.8-kb 크기의 BglII-KpnI DNA 절편에 BGS2가 존재하는 것으로 추정되었다.

  • PDF

$\beta$-Glucan Suppresses LPS-stimulated NO Production Through the Down-regulation of iNOS Expression and $NF{\kappa}B$ Transactivation in RAW 264.7 Macrophages

  • Yang, Jeong-Lye;Jang, Ji-Hyun;Radhakrishnan, Vinodhkumar;Kim, Yang-Ha;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.106-113
    • /
    • 2008
  • The antioxidant and anti-inflammatory protective effects of $\beta$-glucan from barley on RAW 264.7 murine macrophage cells induced by lipopolysaccharide (LPS) were examined. The RAW 264.7 murine macrophages were preincubated with various concentrations ($0-200\;{\mu}g/mL$) of $\beta$-glucan and stimulated with LPS to induce oxidative stress and inflammation. The $\beta$-glucan treatments were found to reduce thiobarbituric acid-reactive substance (TBARS) accumulation, and enhance glutathione levels and the activities of antioxidative enzymes, including superoxide dismutase (SOD), catalase, glutathione reductase, and glutathione peroxidase (GSH-px) in the LPS-stimulated macrophages as compared to the LPS-only treated cells. Nitric oxide (NO) production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $104\;{\mu}g/mL$. Further treatment with $\beta$-glucan at $200\;{\mu}g/mL$ suppressed NO production to 2% of the LPS-control, and suppressed the levels of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner. The specific DNA binding activity of nuclear factor ${\kappa}B\;(NF{\kappa}B)$ was significantly suppressed by $\beta$-glucan treatment with an $IC_{50}$ of $220\;{\mu}g/mL$ in a dose-dependent manner. Finally, barley $\beta$-glucan ameliorates NO production and iNOS expression through the down-regulation of $NF{\kappa}B$ activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.

Antifungal Activity of Salvia miltiorrhiza Against Candida albicans Is Associated with the Alteration of Membrane Permeability and (1,3)-β-D-Glucan Synthase Activity

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.610-617
    • /
    • 2016
  • Candidiasis has posed a serious health risk to immunocompromised patients owing to the increase in resistant yeasts, and Candida albicans is the prominent pathogen of fungal infections. Therefore, there is a critical need for the discovery and characterization of novel antifungals to treat infections caused by C. albicans. In the present study, we report on the antifungal activity of the ethanol extract from Salvia miltiorrhiza against C. albicans and the possible mode of action against C. albicans. The increase in the membrane permeability was evidenced by changes in diphenylhexatriene binding and release of both 260-nm-absorbing intracellular materials and protein. In addition, inhibition of cell wall synthesis was demonstrated by the enhanced minimal inhibitory concentration in the presence of sorbitol and reduced (1,3)-β-D-glucan synthase activity. The above evidence supports the notion that S. miltiorrhiza has antifungal activity against C. albicans by the synergistic activity of targeting the cell membrane and cell wall. These findings indicate that S. miltiorrhiza displays effective activity against C. albicans in vitro and merits further investigation to treat C. albicans-associated infections.

Antifungal Activities of Peptides with the Sequence 10-17 of Magainin 2 at the N-termini against Aspergillus fumigatus (Antifungal activities of peptides with the sequence 10-17 of magainin 2 at the N-termini against aspergillus fumigatus)

  • Lee, Myung Kyu;Lee, Dong Gun;Shin Song Yub;Lee, Sung Gu;Kang Joo Hyun;Hahm, Kyung Soo
    • Journal of Microbiology
    • /
    • 제34권3호
    • /
    • pp.274-278
    • /
    • 1996
  • Two peptides, MA-inv AND MA-ME, with the sequence 10-17 of maganin 2 at their-N-termini were designed and synthesized. The peptides had higher antifungal activities against Aspergilus fumigatus without hemolytic activities. The minimal inhibition concentratory (MIC) values of both peptides against A. fumigatus were 5 .mu.g/ml, whereas those of the native peptides, magainin 2 and melittin, were 10.mu.g/ml. At 3 .mu.g/ml, MA-inv and MA-ME inhibited the mycelium growth of A. fumigatus by 94.6% and 97.3% respectively, whereas magainin 2 and melittin inhibited by 62.2% and 32.4, respectively. MA-inv showed up to 80% inhibition of (1, 3)-.betha.-D-glucan synthase activity of A. fumigatus. The peptides also showed up to 80% inhibition of (1, 3)-.betha.-D glucan synthase activity of A. fumigatus. The peptides also showed antifungal activities for other fungi of Aspergillus sp. However, the antibiotic activities of MA-ME against Escherichia coli, Bacillus subtilis and Fusarium oxysporum were more effective than those of MA-inv, suggesting that the C-terminal sequences of MA-inv and MA-ME may also influence their antibiotic activities. These results suggest that the N-terminal sequence of the designed peptides, KKFGKAFV, is important for their antifungal activities against A. fumigatus and their C- terminal sequences are related to the organism selectivity.

  • PDF

Agrobacterium sp. ATCC31750에 대한 beta-l,3-glucan 합성 대사경로의 주요 단백질 검출 (Identification of Key beta-1,3-glucan Synthesis Enzymes in Agrobacterium sp. ATCC31750)

  • 김려화;이중헌
    • KSBB Journal
    • /
    • 제19권5호
    • /
    • pp.406-409
    • /
    • 2004
  • Matrix Assisted Laser Desorption ionization Time of Flight (MALDI-TOF) was used for enzymes identification related to B -1,3-glucan synthesis. Agrobacterium sp. ATCC31750 was cultivated with two stage Continuous Stirrer Tank Reactor (CSTR) and the cells were harvested and their protein profiles were analysed by two dimensional electrophoresis. The specific enzyme spot was treated with trypsin and ana lysed by MALDI-TOF to get peptide molecular weight. The peptide molecular weights were matched with Agrobacterium tumefacience's Data Base from the matrix science site, then could identify the avaliable key enzymes. In this study, we identified key metabolite of synthesis of beta-1,3-glucan, such as glucose-6-phosphate isomerase, phosphoglucomutase, B-1,3-glucan synthase and glucokinase, and we also identified uracil phosphoribocyl transferase and Ribosome recycling factor also.

Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide

  • Choi, E.Y.;Lee, S.S.;Hyeon, J.Y.;Choe, S.H.;Keum, B.R.;Lim, J.M.;Park, D.C.;Choi, I.S.;Cho, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권11호
    • /
    • pp.1664-1674
    • /
    • 2016
  • This research analyzed the effect of ${\beta}$-glucan that is expected to alleviate the production of the inflammatory mediator in macrophagocytes, which are processed by the lipopolysaccharide (LPS) of Escherichia. The incubated layer was used for a nitric oxide (NO) analysis. The DNA-binding activation of the small unit of nuclear factor-${\kappa}B$ was measured using the enzyme-linked immunosorbent assay-based kit. In the RAW264.7 cells that were vitalized by Escherichia coli (E. coli) LPS, the ${\beta}$-glucan inhibited both the combatant and rendering phases of the inducible NO synthase (iNOS)-derived NO. ${\beta}$-Glucan increased the expression of the heme oxygenase-1 (HO-1) in the cells that were stimulated by E. coli LPS, and the HO-1 activation was inhibited by the tin protoporphyrin IX (SnPP). This shows that the NO production induced by LPS is related to the inhibition effect of ${\beta}$-glucan. The phosphorylation of c-Jun N-terminal kinases (JNK) and the p38 induced by the LPS were not influenced by the ${\beta}$-glucan, and the inhibitory ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) decomposition was not influenced either. Instead, ${\beta}$-glucan remarkably inhibited the phosphorylation of the signal transducer and activator of transcription-1 (STAT1) that was induced by the E. coli LPS. Overall, the ${\beta}$-glucan inhibited the production of NO in macrophagocytes that was vitalized by the E. coli LPS through the HO-1 induction and the STAT1 pathways inhibition in this research. As the host immune response control by ${\beta}$-glucan weakens the progress of the inflammatory disease, ${\beta}$-glucan can be used as an effective immunomodulator.

Role of LAMMER Kinase in Cell Wall Biogenesis during Vegetative Growth of Aspergillus nidulans

  • Choi, Yu Kyung;Kang, Eun-Hye;Park, Hee-Moon
    • Mycobiology
    • /
    • 제42권4호
    • /
    • pp.422-426
    • /
    • 2014
  • Depending on the acquisition of developmental competence, the expression of genes for ${\beta}$-1,3-glucan synthase and chitin synthase was affected in different ways by Aspergillus nidulans LAMMER kinase. LAMMER kinase deletion, ${\Delta}lkhA$, led to decrease in ${\beta}$-1,3-glucan, but increase in chitin content. The ${\Delta}lkhA$ strain was also resistant to nikkomycin Z.

Melittin-Hybrid 합성 펩타이드가 Fusarium oxysporum의 성장에 미치는 저해효과

  • 이동건;신송엽;이성구;이명규;함경수
    • 한국미생물·생명공학회지
    • /
    • 제24권5호
    • /
    • pp.529-533
    • /
    • 1996
  • Melittin (ME) from honeybee venom has a broad range of strong antimicrobial activity, but it has hemolytic activity against eukaryotic cells. In order to design peptides with powerful antifungal activity without cytotoxic property of ME and understand structure-antifungal activity relationships, the hybrid peptides derived from the sequences of ME and cecropin A (CA) or magainin 2 (MA), MA(10-17)ME(1-12) and CA(1-8)ME(1-12). were synthesized by solid phase method. MA(10-17)ME(1-12) showed potent antifungal activity comparable to ME against Fusarium oxysporum with no hemolytic activity against human red blood cells. The hybrid peptides showed strong inhibi- tion of (1, 3)-$\beta$-D-glucan synthase. This result indicates that the antifungal activity of the hybrid peptides against Fusarium oxysporum is attributed to the inhibition of cell wall synthesis. The results therefore showed a successful design of a peptide having antifungal activity without hemolytic property.

  • PDF