• Title/Summary/Keyword: globally exponential stability

Search Result 8, Processing Time 0.023 seconds

EXISTENCE AND GLOBALLY EXPONENTIAL STABILITY OF PERIODIC SOLUTION OF IMPULSIVE FUZZY BAM NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND VARIABLE COEFFICIENTS

  • Zhang, Qianhong;Yang, Lihui;Liao, Daixi
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1031-1049
    • /
    • 2012
  • In this paper, a class of impulsive fuzzy bi-directional associative memory (BAM) neural networks with distributed delays and variable coefficients are considered. Using Lyapunov functional method and fixed point theorem, we derived some sufficient conditions for the existence and globally exponential stability of unique periodic solution of the networks. The results obtained are new and extend the previous known results. In addition, an example is given to show the effectiveness of our results obtained.

EXISTENCE AND STABILITY OF ALMOST PERIODIC SOLUTIONS FOR A CLASS OF GENERALIZED HOPFIELD NEURAL NETWORKS WITH TIME-VARYING NEUTRAL DELAYS

  • Yang, Wengui
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.1051-1065
    • /
    • 2012
  • In this paper, the global stability and almost periodicity are investigated for generalized Hopfield neural networks with time-varying neutral delays. Some sufficient conditions are obtained for the existence and globally exponential stability of almost periodic solution by employing fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results. Finally, an example is given to demonstrate the effectiveness of our results.

EXISTENCE AND GLOBAL EXPONENTIAL STABILITY OF POSITIVE ALMOST PERIODIC SOLUTIONS FOR A DELAYED NICHOLSON'S BLOWFLIES MODEL

  • Xu, Yanli
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.473-493
    • /
    • 2014
  • This paper concerns with a class of delayed Nicholson's blowflies model with a nonlinear density-dependent mortality term. Under appropriate conditions, we establish some criteria to ensure that the solutions of this model converge globally exponentially to a positive almost periodic solution. Moreover, we give some examples and numerical simulations to illustrate our main results.

Fuzzy H2H Controller Design for Delayed Nonlinear Systems (시간지연을 갖는 비선형 시스템의 퍼지 H2H 제어기 설계)

  • Jo, Hui-Su;Lee, Gap-Rae;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.578-583
    • /
    • 2002
  • This paper presents a method for designing fuzzy $H_2/H_{\infty}$ controllers of nonlinear systems with time varying delay. Takagi-Sugeno fuzzy model is employed to represent nonlinear systems with time varying delay. Using a single quadratic Lyapunov function, the globally exponential stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy $H_2/H_{\infty}$ controllers is then presented in terms of linear matrix inequalities(LMls). The proposed fuzzy $H_2/H_{\infty}$ controllers minimizes the upper bound on the linear quadratic performance measure.

Output Feedback Fuzzy H(sup)$\infty$ Control of Nonlinear Systems with Time-Varying Delayed State

  • Lee, Kap-Rai
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 2000
  • This paper presents and output feedback fuzzy H(sup)$\infty$ control problem for a class of nonlinear systems with time-varying delayed state. The Takagi-Sugeno fuzzy model is employed to represent a nonlinear systems with time-varying delayed state. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of fuzzy H(sup)$\infty$ controllers are given in terms of matrix inequalities. Constructive algorithm for design of fuzzy H(sup)$\infty$ controller is also developed. A simulation example is given to illustrate the performance of the proposed design method.

  • PDF

Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations

  • Kwon Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.183-191
    • /
    • 2004
  • High Deborah or Weissenberg number problems in viscoelastic flow modeling have been known formidably difficult even in the inertialess limit. There exists almost no result that shows satisfactory accuracy and proper mesh convergence at the same time. However recently, quite a breakthrough seems to have been made in this field of computational rheology. So called matrix-logarithm (here we name it tensor-logarithm) formulation of the viscoelastic constitutive equations originally written in terms of the conformation tensor has been suggested by Fattal and Kupferman (2004) and its finite element implementation has been first presented by Hulsen (2004). Both the works have reported almost unbounded convergence limit in solving two benchmark problems. This new formulation incorporates proper polynomial interpolations of the log­arithm for the variables that exhibit steep exponential dependence near stagnation points, and it also strictly preserves the positive definiteness of the conformation tensor. In this study, we present an alternative pro­cedure for deriving the tensor-logarithmic representation of the differential constitutive equations and pro­vide a numerical example with the Leonov model in 4:1 planar contraction flows. Dramatic improvement of the computational algorithm with stable convergence has been demonstrated and it seems that there exists appropriate mesh convergence even though this conclusion requires further study. It is thought that this new formalism will work only for a few differential constitutive equations proven globally stable. Thus the math­ematical stability criteria perhaps play an important role on the choice and development of the suitable con­stitutive equations. In this respect, the Leonov viscoelastic model is quite feasible and becomes more essential since it has been proven globally stable and it offers the simplest form in the tensor-logarithmic formulation.

Output Feedback Robust $H^infty$ Control for Uncertain Fuzzy Dynamic Systems (불확실성을 갖는 퍼지 시스템의 출력궤환 견실 $H^infty$ 제어)

  • Lee, Kap-Lai;Kim, Jong-Hae;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.15-24
    • /
    • 2000
  • This paper presents an output feedback robust H$\infty$ control problem for a class of uncertain nonlinear systems, which can be represented by an fuzzy dynamic model. The nonlinear system is represented by Takagi-Sugeno fuzzy model, and the control design is carried out on the basis of the fuzzy model. Using a single quadratic Lyapunov function, the globally exponential stability and disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust H$\infty$ controllers are given in terms of linear matrix inequalities(LMIs). Constructive algorithm for design of robust H$\infty$ controller is also developed. The resulting controller is nonlinear and automatically tuned based on fuzzy operation.

  • PDF

Fuzzy H2/H Controller Design for Delayed Nonlinear Systems with Saturating Input (포화입력을 가지는 시간지연 비선형 시스템의 퍼지 H2/H 제어기 설계)

  • Cho, Hee-Soo;Lee, Kap-Rai;Park, Hong-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.239-245
    • /
    • 2002
  • In this Paper, we present a method for designing fuzzy $H_2/H_{\infty}$ controllers of delayed nonlinear systems with saturating input. Takagi-Sugeno fuzzy model is employed to represent delayed nonlinear systems with saturating input. The fuzzy control systems utilize the concept of the so-called parallel distributed compensation(PDC). Using a single quadratic Lyapunov function, the globally exponential stability and $H_2/H_{\infty}$ performance problem are discussed. And a sufficient condition for the existence of fuzzy $H_2/H_{\infty}$ controllers is given in terms of linear matrix inequalities(LMIs). The designing fuzzy $H_2/H_{\infty}$ controllers minimize an upper bound on a linear quadratic performance measure. Finally, a design example of fuzzy $H_2/H_{\infty}$ controller for uncertain delayed nonlinear systems with saturating input.