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Abstract

This paper presents an output feedback robust H” control problem for a class of uncertain
nonlinear systems, which can be represented by an fuzzy dynamic model. The nonlinear system is
represented by Takagi-Sugeno fuzzy model, and the control design is carried out on the basis of
the fuzzy model. Using a single quadratic Lyapunov function, the globally exponential stability and
disturance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions
for the existence of robust H™ controllers are given in terms of linear matrix inequalities(LMIs).

Constructive algorithm for design of robust H™ controller is also developed. The resulting controller

is nonlinear and automatically tuned based on fuzzy operation.
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fuzzy control systems. There have been sig-
nificant research efforts on these issues. With
the development of fuzzy systems, it is known
that the qualitative knowledge of a system can
also be represented in nonlinear functional form.
On the bhasis of this idea, some fuzzy models
based control system design methods have
appeared in the fuzzy control field "™, These

methods are conceptually simple and straight-
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forward. The nonlinear system is represented by
a Takagi-Sugeno (T-S)-type fuzzy model. And
then, the control design is carried out on the
basis of the fuzzy model via the so-called
parallel distributed compensation scheme. Since
uncertainties are frequently a source of insta—
bility, Tanaka et al™™ stability

analysis for a class of uncertain nonlinear

presented

systems and method for designing robust fuzzy
controllers to stabilize the uncertain nonlinear
systems. However, all the above design method
has to predetermine the state feedback gains
before checking the stability condition of the
closed-loop system. In real control problems, all
thus it
necessary to design output feedback controller.
Ma et al®
of the fuzzy controller and fuzzy observer on the

of the states are not available, is

presented the analysis and design
basis of T-S fuzzy model using separation

Tanaka et al
systematic design method of the fuzzy regulator

property. also  presented
and fuzzy observer on the basis of T-S fuzzy
model.

In the last decade,

linear systems has been well developed and

H” control theory for

found extensive applications to efficiently treat
the robust stabilization and disturbance rejection

O Also, there have been a lot of

problem
interests on the problem of robust H control
for the systems with parameter uncertainty. The
robust H” control approach is concerned with
the design of controller which stabilizes an
uncertain system while satisfying an H”-norm
bound constraint on disturbance attenuation for
all admissible uncertainties™™® ™,

In this paper, we design an output feedback
robust H” controller for uncertain nonlinear
system on the basis of fuzzy model. To design
a robust H” controller, the nonlinear systems
The

control design is carried out on the basis of the

are represented by T-S fuzzy model.

fuzzy model and the resulting controller is tuned
on-line based on fuzzy operations. A sufficient
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condition is derived such that the closed-loop
system is globally exponentially stable and L,
gain of the input-output map is bounded. Based
on the derivation, LMI-based robust H™ con-

troller are constructed.

II. PROBLEM FORMULATION

The continuous fuzzy dynamic model, proposed
by Takagi and Sugeno, is described by fuzzy
IF-THEN rules which represented local linear
input-output relations of nonlinear system.
Consider an uncertain nonlinear system that can
be described by the following uncertain T-S

fuzzy model:

Plant Rule : :

IF 2z (D is My and - and 2z,(8 is M,

THEN  x()=(A;+ 4A(D)x() + By, w () + By, u(?)
e (H=Cx(D, e (H=ul®
WO=Cyx(D+w (D, i=1,2,,7
x(H=0, =0

where M is the fuzzy set, »(de R” is the state

vector, (e R" is the control input vector,

[wl (H wf(»]Te R’ is the square-integrable

input vector, y(t)e R® is the

lef () ei (1T e R’

disturbance

measured output, is the

controlled output vector, r is the number of

IF-THEN rules,
system variables, i.e., the premise variables, and
all with
appropriate dimensions. And the time-varying
4A;(#) are defined as

z)~z; are some neasurable

matrices are constant matrices

parameter uncertainties

follows :

1,2, 7 2

AA{D=HF(DE,, i=

where H and E,, i=1,2,-, 7, are known constant

real matrices with appropriate dimensions, and
F(t) is unknown matrix function which
bounded by

is
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Fpe = {FOIF(HF(H <1,
the elements of F(9 are

Lebesgue measurable} (3)

Let #:;(2(¢)) be the normalized membership

function of the inferred fuzzy set #;(z(¢)),i.e.,

2= hi(2(D)] T2 @
where

miz(0)= 1M z;(2)
2B) =L210) 200) -+ 21", 5)

M;(z;(¢)) is the grade of membership of

z;(t) in My It is assumed that

h{z(D)= 0, i=1,2, -, 7
g Ri(2()>0 (6)

for all # Then we can obtain the following

conditions :
pi(2()= 0, i=1,2,,7

PIPHECHES! )

for all ¢ Let pe R be the set of member-
ship function satisfying (7). Given a pair of
(v (1), w(®)), by using a center average defuzzifer,
product inference, and singleton fuzzifier, the
dynamic fuzzy model (1) can be expressed by
the following global model

x() = (A(w) + HF()E, (1) x(8) + By () w1 () + By () u( )
e () = C(wx(D, e;(t) = u(t) (&)
WD = Colw)x () + wo (B

where  u=[pg, pp -, n,] P,

A(w)= 2 u2(D)A; B ()= K ud2()B,,

By(w)= T ui(t)By, Cw)= Ruix0)C,

Cold= Zu(E)C,, E)= Tyl a(t)E.,. (9)
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As a robust H® controller of the fuzzy
system (1), we consider the following output

feedback controller :

2D =A,(1) %D+ By() y(2); (0)=0 (10)

w(d) = Cp(p) %D

A, Bu(p), and Cy(y) are to be
determined. From (8) and (10), we obtain the

following closed-loop system

where

UD=[ A(w+ HF(H E(w]1&(8) + B(w) w()

e(h= Tw) &
{H=0, t<0 an

where €(O=[xT(d, #* D17, w(d=[w! (9, w](HIT,

and e(H=[ef (D, el (D],

R Al By(12) Cx(g)
A(p)=
B C) Axlw)
B () 0 C{w 0
B=| | , =
0 Bk(ﬂ) 0 C(#)
E(w=I[E . (» 0], B=[H"0]". (12)

For a given 7, we define L, gain 7—

performance of the system (11) as the quantity
T 2 T 2
fo lle(DIPdt< ¥[ fo [l (HI°df] (13)

for all T>0 and all we Ly,[0 T1, where |- i

denotes the Euclidean norm.

This paper addresses designing a output

feedback robust H” controller (10) for the
system (8) such that the closed-loop system is

globally exponentially stable and achieves Lo

gain  y—performance.

M. STABILITY and L, NORM
ANALYSIS

We can rewrite the state space representation

of the closed-loop system (12) as



A

18 34
t)=AwedH+ B p(d+ Blyw(d
dH=Ewd ed=TUD

O =F(Ha(), IIFDI=<].

Lemma 3.1: Consider the unforced system of
(11). If there exist matrices P>0, and positive
scalars A and e« satisfying the following inequa-
lities

AWTP+PA(W+TS, PH AE"(»
gp Al 0 <0, (15
AE(w 0 —AI .

for all ux=p, where

al 0
(16)

1=

00

then the equilibrium of the unforced system of
(11) is globally exponentially stable.
Proof - Define a Lyapunov functional

W 0=¢T() Pe(h, an

where P>0. Then there exist scalars ¢6,>0 and
8,0 such that &l ¢lI’< V(g #) < &I¢l% If there

>0 such that (&0 < —allxli,

then the unforced system of (11) is globally
[15]

exists scalar

exponentially stable cite””. Assuming the zero
input, the condition V(¢ 8 < —eallxll for all # is

equivalent to

O{ AT(wP+PA(W+ SJeD+p7() BTPLD)
' +¢T(WPHp(t) <0 (18)
for all ¢(» and p(¥ satisfying
pT(Dp() < £7(D BT (1) E(w)&(1). (19)
Applying the S—procedure cite[m, this is
equivalent to the existence of P>0 and A=0
satisfying
AT(WP+PA(W+ S+AET (0 B2 PH
<0.
Bp —AI
(20)

S Ze A4 Azadd 2348 24 57 A
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By using the Schur complernent[w],

it can be
easily shown that the inequality (20) is equivalent
to (15). O

Lemma 3.2: Consider the system (11) and let
»»0 be a given scalar. If there exist matrices
P> 0, and positive scalars A and « satisfying

the following inequalities for all zep

AW TP+PA(W+S, PE PB(w CT(w AE(w

a’e -AI 0 0 0
B (wP 0 —-4I 0 0 |=0
C(w 0 0 -1 0
AE(p) 0 0 0 —AI
21
where S5, is given by (16), then the corres-

ponding closed-loop system (11) is globally
exponentially stable and achieves L, gain 7-
performance for all «(d and all admissible
uncertainty.

Proof : The matrices P>0 and positive scalars
A and e satisfying (21) also satisfy the inequalities

(15). Using

Vg, = ¢"OPU), (22)
We introduce the following condition

K=V d+e’ (e —rFw' (Hu(9=0. (23)
Along the ftrajectory of (11), J(H<0 is

equivalent to

T AT(WP+PA(m+ C () TWILD
+ETHPAND+ 7D PB() w(d+p™()) B PLD)

+wT () BT (u)Pe(d —Pw () w(d <0, (24)
for all (¥ and p(9 satisfying
pT(p(1) < £7(8) ET () E(u) L(0). (25)

Using the S—procedure, this is true if and only
if there exist P>0 and A=>0 such that

Ay(p) PH PB(p
B'p —a1 0 <0, (26)
BT(wP 0 — I
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where Ay(u)= A" (1) P+ PA(x)+ T (w) Tlp)
+4 E"(w) E(w). By using the Schur comple-

ment, it can be shown that the matrices P)0,
and positive scalars A and e satisfying (21)
also satisfy the inequalities (26). Thus if (21) is
satisfied, then (23) is satisfied. We integrate (23)
from O to 7, with the initial condition x(0)=0,
to get

VD) + [ (27 (D)= P (Du(dae<0.  (20)

Since  V(x(T)0, this implies [ ll2(9 1’ <

T
Jy o 17, O

V. FUZZY MODEL-BASED ROBUST H”
CONTROLLER DESIGN

In this section, we present a solution to the
robust H” control problem for the T-S fuzzy
model in terms of LMIs.

Definition 4.1:Given the system (8) and
7>0. The Globally ES- y Problem is solvable
if there exist a finite dimensional controller (10)
and matrices P>0, and positive scalars Aand e«
satisfying the inequality (21) for all xep.

The inequality (21)

parameter of controller. We define a variable

includes the unknown

including all parameters of controller

0 C)
K(w= , (28)
B(w) Alw)
and we introduce the abbreviations:
Alp) 0 By(w) 0
Aa(/‘)z ’ Blo(#)= »
0 0
By() 0 Clw) 0
By(p)= } Cu()= (29)
0 I
0 Clw) 0 00
Dyg(/l)z ]], Cla(#)= 1, Dzo(ﬂ)= ].
00 0 0 00

(389)

then the closed-loop matrices of (11) can be

written as

A=A+ Ba(W KW Culw,
B(1)=B1,(s) + Ba{ ) K (1) D, 1), (30)
C()= C1,(12) + Doy 1) K(12) Coo (11).

Note that (29) involves only plant data and all
matrices of (30) are affine form of the controller
data K(u). Using the notation of (29), define
the left-hand side of inequalities (21) as

Gy = O(p) + S WK (1) 0T () + MWK () I (1) 57

(31)
where
Z=Diag(P, LI, I, 1),
I(w=[BE” 0 0 Dyp(w 017,
M) =[Cx(w) 0 Dylw) 0 017, (32)
and
Al P+PA(W+S, PR PB(w) Ch(w) AET(w)
a’p Al 0 0 0
O(w)= BI(wP 0 —AI 0 0
C 1) 0 0 -TI 0
AE(w) 0 0 0 —AI
(33)

Theorem 4.1 : Given the system (8) and 7)0,
Globally ES - y Problem is solvable if and only if

there exist matrices X(e R™>0 and Y(e R™>0

satisfying following inequalities for all usp,

My H Bw YCYp) EI¥ Y
HT = 0 0 0 0
B o -1 0 0 0 ¢
cwy 0 0 -1 0 0 ’
E(Y 0 0 0 —-A7 0
Y 0 0 0 ~A7 —(eD !
(34)
Ny  XH XB(p) CHw) AEI(w
H'X =i 0 0 0
Bl(wx 0 —-4I 0 0 [<0, (35
Clw) 0 0 . 0
AE (1) 0 0 0 —Al
?;' {,] <0, (36)
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for some positive scalars A and «, where

A(p)=YAT () + A(w)Y— By () B™ (u),

MwW=AW X+ XA(w+a—FCl(wC,(). (37

Furthermore, one » —dimensional, strictly proper
controller that solves the feedback problem is

defined as:

A(): =A)—PZ'CHw Cy(1) — By () By () Y !
+ 7By (WB (WY '+ AT HHTY ' - Z 7 H(p)
B : =7Z7'CI(1), Cp(p): (38)

—-Bf (Y7,
where Z: =X-Y ! and

Hw=—[Y AW +A ()Y ' =Y 'By(W) Bf () Y™
+y Y 'B(p) B Y '+ 2T Y I HHTY !

+ CT() () + ol + AET () E()]. (39)

Proof: (=) Let Pe R pe the positive
definite matrix that satisfies the Lemma 3.2. Define
Q: =P !. Clearly,
Partition P as

where X,Ye R”" and X, Y; €« R”™". By the
matrix  inversion it that
X-Y '20, which is LMI in equation (36).
Now, define matrices ,(x) and @ ,(x) such

Q@ is also positive definite.

X X, Y Y,

P= , (40)

xI x; Y7 v,

lemma, follows

that for all x, 75 () (p)=0, 6% (1) @(w)=0, and

(), T, (0], [6(), 0. ()] are full column
rank. Then
100000 —By(w 0
007I00¢0 0 0
ro 1000700 0 0
TW=lg60070 o of
000007 0 0
0000O0O0 0 I
IOOO—C}(#)OOO
0010 0 000
T 1000 1 0 000
@J_(/l)— 0000 0 7100’ (41)
0000 0 0710
0000 0 00 I

A4S 2+ AR Azl 2498 24 7 Ao
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Since both MI,(x) and O, (w) are full col
rank for all ¢ e P, it is clear that if G(@)<0,
then 5 (Z7'G(W)I ™' T . (w<0 and O () G(w)
6 . (<0, which is equivalent to

I (27 0= ™' L ()40, (42)
0T (W) L (1)<0 (43)
for all g e P. Carrying out the algebraic

manipulations, it can readily be seen by taking
Schur complements of the resulting expressions
in (42) and (43) that the conditions (34) and (35)
are satisfied.

(& For that the
controller given in (38) satisfies the Globally

sufficiency, we verify

ES —y Problem using

—(X-Y~

x-x (44)

)

First, note by the Schur complements, P>0. We

S P

redefine the left-hand side of inequality (21) as

Y= AT (WP+PA(w+ Si+ CT(w C(w

+A BT () E(w+77%PB(w) BT (WP

+A7'PH AP (45)

where the closed-loop matrices A, B, C, A
and E are defined in (12). We perform the
following
Y(1)<0. Partition ¥ inton #nX#»n blocks ¥, Y,

matrix manipulations to verify

and Y. Define a transformation

P[4

note Y(w)<0 if and only if 7T7¥(x)7<0. Define

the transformed state-space data

(46)

A(w:=T""AWT, Blp:=T"" By,

Clwy=C(wT Ew:=EwT, B=T"'H. an

Let Kw):=TP()T and 3;: =TT §,7. Then

TTY(x)T<0 can be written as
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AT () P+ PAW+ 3+ CT(w) T+ E™ E(w

+7 P B(w B (w P+a"'PH H KO.
(48)

Denote the left-hand side of (48) as V¥ and
it into blocks Yy, Yy, YneR™"
Using the controller (38), it can be shown that

partition

—H(w) —H(w
Y()=

. (49)
—H(y) Yn—H(w

Using the Schur complement, Y<0 if and only if

— H(w)<0, Y ()<0. (50)

These conditions are equivalent to (34) and (35).

Theorem 4.2: Consider the system (9) with
assumption (2). Then the Globally ES- y problem
is solvable, if there exist common matrices
X0, >0 and positive scalars ¥, @, A satisfying

the following LMIs:

(F,-,v<0,z'=l,2,...,r, W,—,-+ w]','<0,l.<]-<7’, (51)
.Q,','(O, l.=1,2,...,7', .Q[j‘i’.Q,',’(O, l<]< 7, (52)
X I
>0. (53)
1?7
In here
Ay, B, YcT YET ¥
B, =% 0 0 0
v.=|1C; Y 0 =il 0 0 , (54)
E,.Y 0 0 -1 0
¥y o0 0 0 -2l
r; I XH XB, c7?
I —%7'r o 0 0
H'X 0 0 =% 0
C; 0 0 0 —AI
where
Ay= YA+ A;Y—2B;, B} + HH",
r;=XA+AlX-5CiCc,+ETE,, (56)

Furthermore, positive definite matrices X, ¥ and

positive scalars e, y are given by

X=X, Y=117,

(39D

21

2

a=Aia, Y¥=21% 57

and a suitable controller is expressed in (38).
Proof : The inequality (34) and (35) of Theorem
4.1 are equivalent to

YA+ A Y- By(w) BT (1) + 4 'HHT+ 7 B () B" ()
+ YCT () ) Y+ A YET (W E12) Y+ a VY40, (58)
XA() + AT X+ al - 7 C™() Cw) + 4 " XHHTX

+7 B () B (1) X + CT(1) Cld) + AE(W)E()<0.  (59)

First, multiply 4 to (58) and A~' to (59) and let
X=417'X, Y=Y, a= 1"lq,
Then, using Schur complement and notation (9),

and = 171

inequalities (58) and (59) are equivalent

IS WHECIEOT I

2, B0, (2(9) 2 €0, (60)

Inequality (60) can be also written as

2 D)) W s+ Sy () 1 2(D) (F 5+ )10,

32D A D)2 T 2D (D) (2% 2,90, (61)

From (61), we get (51) and (52). U

It has been seen that the controller design
problem of the fuzzy system (8) can be trans—
formed into a linear algebra problem. This set of
LMIs constitutes a finite-dimensional convex
feasibility problem. There are several efficient
algorithms to solve the above convex LMls

problem[17] -[191

V. DESIGN EXAMPLE

We will design a fuzzy H” filter for the following
nonlinear system ;

X100 =—0.123() —0.02%,(H — 0.6723 () + w( D + ()
GESAC)
el(D=x:(D), ey (H=ult).

The purpose of control is to achieve closed
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loop stability and to attenuate the influence of
the exogenous input disturbance w(# on the
penalty variable [ef (9 &7 (H]7. 1t is also assumed
that x,(# is measurable and x/(de[—-1.51.5],
x()el[—1.5 1.5]. Since x,(d is not observable,
let assume that xX(H= (Hx,(H where o is the
o(Hel0 2.25]. Using the

. . 6 .
same procedure as in cite" ], the nonlinear term

uncertain term and

can be represented as
—0.67x3(D=My - 0 - 2,(D—(1— My) - 1.5075x5(D.

By solving the equation, M, is obtained as

follows:

2
M) =120

2
X
Mp(2o(0): =1 = My (xy (D) = 2'55 .
My, and M, can be interpreted as membership

functions of fuzzy set. By using these fuzzy
sets, the nonlinear system can be presented by
the following uncertain T-S fuzzy model

Plant 1:
IF x(8) is M, THEN

W)= (A, + dAD)x()+ B u( D+ By uld)
WD =C,x(H
ei(D=Cix(H, ed=u(d

Plant 2: IF xy, is M, THEN
D)= (Ay+ 4A(D)x(8) + B ,w(D+ By u(H
W)= Cx(1)

e(H=Cox(®), ex(=uld)

where x(D=[x(D x(d]7,

—0.1125 ~0.02 —0.1125 —1.527
| | 4| |
1 0 1 0
B, =B,,=[1 01", By,,=B,=[1 01"
C,,=C,=[0 1], Ci=C,=[0 1],
AA1=HF(t)Ex1, AAZZHF(f)ExZ,
H=[-0.11125 017, E,=E,=[1 0], F)=Q.

g% AA 5 Al

ZFHER 2

Then solutions satisfying (51)~(53) are

[ 9.0256 —5.2199] [ 0.3600 —0.0932
X= 3 = ’
—5.2199 11.6603 —0.0932  0.2603
A=3.3649, @=0.3894-10 "% 7=4.6%.

The simulation results for the nonlinear systems
are shown in Fig. 1. For these simulations, the
initial value of the states are x(0)=-1 and
%(0)=—1.2. And the disturbance signal w(? is
defined by

0.3, 2 sec <t<3 sec
w() =
3, otherwise

The designed robust fuzzy H” controller
stabilizes the nonlinear system and attains

disturbance attenuation effect.

1 T
-~ X1t
— X2 |
N —
2 ST
&
5 10 15
Time(sec)
3
25 J—— u(t) }A
2 ,,,,,,,,,,,,,,
15 ‘ ---------
g 1 \ ----------------
05 \
0
0.5 \
-1
0 5 10 15
Time(sec)

T8 1. 8AE Azdle) gk AlEHeld Ax
Fig. 1. The simulation results of nonlinear
system.

Io. CONCLUSION

In this paper, we have developed output
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feedback robust H” controller design method for
uncertain nonlinear systems described by Takagi
and Sugeno’s fuzzy model. We have obtained
sufficient conditions for the existence of robust
H” controller such that the closed-loop fuzzy
control system is globally exponentially stable
and achieves a prescribed level of disturbance
attenuation. Based on the derivation, an LMI-
based robust H™ controller is constructed. The
control design was carried out on the basis of
the fuzzy model and the resulting controller is

tuned based on fuzzy operation.
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