• Title/Summary/Keyword: global navigation path

Search Result 86, Processing Time 0.029 seconds

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path

  • Kim, Yong-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.203-209
    • /
    • 2010
  • This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.

High-Speed Path Planning of a Mobile Robot Using Gradient Method with Topological Information (위상정보를 갖는 구배법에 기반한 이동로봇의 고속 경로계획)

  • Ham Jong-Gyu;Chung Woo-Jin;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.444-449
    • /
    • 2006
  • Path planning is a key element in navigation of a mobile robot. Several algorithms such as a gradient method have been successfully implemented so for. Although the gradient method can provide the global optimal path, it computes the navigation function over the whole environment at all times, which result in high computational cost. This paper proposes a high-speed path planning scheme, called a gradient method with topological information, in which the search space for computation of a navigation function can be remarkably reduced by exploiting the characteristics of the topological information reflecting the topology of the navigation path. The computing time of the gradient method with topological information can therefore be significantly decreased without losing the global optimality. This reduced path update period allows the mobile robot to find a collision-free path even in the dynamic environment.

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

Path planning for mobile robot using genetic algorithm (유전 알고리즘을 이용한 이동로봇의 경로 계획)

  • 곽한택;이기성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1189-1192
    • /
    • 1996
  • Navigation is a science of directing a mobile robot as traversing the environment. The purpose of navigation is to reach a destination without getting lost or crashing into any obstacles. In this paper, we use a genetic algorithm for navigation. Genetic algorithm searches for path in the entire, continuous free space and unifies global path planning and local path planning. It is the efficient and effective method when compared with navigators using traditional approaches.

  • PDF

Implementation of Wheelchair Robot Applying SLAM and Global Path Planning Methods Suitable for Indoor Autonomous Driving (실내 자율주행에 적합한 SLAM과 전역경로생성 방법을 적용한 휠체어로봇 구현)

  • Baek, Su-Jin;Kim, A-Hyeon;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • This paper presents how to create a 3D map and solve problems related to generating a global path planning for navigation. Map creation and localization were performed using the RTAB-Map package to create a 3D map of the environment. In addition, when the target point is within the obstacle space, the problem of not generating a global path was solved using the asr_navfn package. The performance of the proposed system is validated through experiments with a wheelchair-type robot.

A Navigation System for a Patrol Robot in Indoor Environments (실내 환경에서의 경비로봇용 주행시스템)

  • Choi, Byoung-Wook;Lee, Young-Min;Park, Jeong-Ho;Shin, Dong-Kwan
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.2
    • /
    • pp.117-124
    • /
    • 2006
  • In this paper, we develope the navigation system for patrol robots in indoor environment. The proposed system consists of PDA map modelling, a localization algorithm based on a global position sensor and an automatic charging station. For the practical use in security system, the PDA is used to build object map on the given indoor map. And the builded map is downloaded to the mobile robot and used in path planning. The global path planning is performed with a localization sensor and the downloaded map. As a main controller, we use PXA270 based hardware platform in which embedded linux 2.6 is developed. Data handling for various sensors and the localization algorithm are performed in the linux platform. Also, we implemented a local path planning algorithm for object avoidance with ultra sonar sensors. Finally, for the automatic charging, we use an infrared ray system and develop a docking algorithm. The navigation system is experimented with the two-wheeled mobile robot using North-Star localization system.

  • PDF

Navigation algorithm for a mobile robot by using the hybrid structure (하이브리드 구조를 사용한 이동 로봇의 주행 방법)

  • Park, Il;Kwon, Young D.;Lee, Jin S.
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.7
    • /
    • pp.1-10
    • /
    • 1996
  • There are many challenging problems in mobile robot navigation. As an example, a mobile robot may wander around in local minimum and may wiggle when it moves through a narrow corridor. In addition, the real time obstacle avoidance and the posture control of mobile robot are also very improtant problems. To address these problems, a navigation algorithm which is composed o freal time obstacle avoidance algorithm and a global path planner (GPP) that genrates the shortest path is presented. In this paper, the global path planner reduce the calculation time by reducing the dta to be handled. Also it can make a real time obstacle avoidance by using the fuzzy logic inference. So the presented algorithm provide a stable navigastion for the mobile robot when it fall into the unstable navigation.

  • PDF

Research on Path Planning for Mobile Robot Navigation (이동로봇의 주행을 위한 경로 계획에 관한 연구)

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl;Kim, Jin-Hwan;Lee, Je-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2401-2403
    • /
    • 2002
  • Given a certain target point, the mobile robot's navigation could be mainly considered about two areas, 'how fast and accurate' and 'how safe'. Such problems regarding the velocity and stability possess close relationship with the path in which the mobile robot navigates in. Thus, the system proposed in this research paper was constructed so the mobile robot can obtain the optimum path by utilizing the information according to the environmental map, based on the Global Path Planning. Also by inducing the Local Path Planning method, it was constructed so that the robots can avoid the obstacles, which were not shown in the environmental map on-line. Particularly, by fusing the Local and Global Path Planning together, it is possible for the robots to plan similar path. At the same time, the focus was on the materialization of effective mobile robot's navigation. It was made possible by utilizing the Fuzzy Logic Control. Also, the validity of the algorithm proposed was proven through the trial experiment.

  • PDF

Motion Planning for Legged Robots Using Locomotion Primitives in the 3D Workspace (3차원 작업공간에서 보행 프리미티브를 이용한 다리형 로봇의 운동 계획)

  • Kim, Yong-Tae;Kim, Han-Jung
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.275-281
    • /
    • 2007
  • This paper presents a motion planning strategy for legged robots using locomotion primitives in the complex 3D environments. First, we define configuration, motion primitives and locomotion primitives for legged robots. A hierarchical motion planning method based on a combination of 2.5 dimensional maps of the 3D workspace is proposed. A global navigation map is obtained using 2.5 dimensional maps such as an obstacle height map, a passage map, and a gradient map of obstacles to distinguish obstacles. A high-level path planner finds a global path from a 2D navigation map. A mid-level planner creates sub-goals that help the legged robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. A local obstacle map that describes the edge or border of the obstacles is used to find the sub-goals along the global path. A low-level planner searches for a feasible sequence of locomotion primitives between sub-goals. We use heuristic algorithm in local motion planner. The proposed planning method is verified by both locomotion and soccer experiments on a small biped robot in a cluttered environment. Experiment results show an improvement in motion stability.

  • PDF

A Method to Determine the Weights for Mission Type based Global Path Planning (임무유형 기반 전역경로계획을 위한 가중치 결정방법)

  • Park, Won-Ik;Lee, Ho-Joo;Kim, Do-Jong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.711-717
    • /
    • 2014
  • Global path planning for autonomous driving of unmanned ground vehicle is essential. When setting global path planning, its accuracy and effectiveness is increased if useful information such as terrain type of driving route has been reflected on global path planning. As a method to reflect the terrain type, there is a method to perform global path planning by applying the weight to each terrain type. At this time, how to assign appropriate weights corresponding to the terrain type is more important than anything. In this paper, we proposed a method to determine the weight for terrain type that may affect the results of global path planning. Moreover, we presented effective operation method and design results(GUI) to check the possibility of the use of the proposed method.