DOI QR코드

DOI QR Code

Practical Path-planning Framework Considering Waypoint Visibility for Indoor Autonomous Navigation using Two-dimensional LiDAR Sensors

경유지의 가시성을 고려한 2차원 라이다 센서 기반의 실용적인 경로 계획 프레임워크

  • Hyejeong Ryu (Department of Mechanical & Biomedical.Mechatronics Engineering, Kangwon National University)
  • 유혜정 (강원대학교 기계의용.메카트로닉스공학과)
  • Received : 2024.05.20
  • Accepted : 2024.06.03
  • Published : 2024.07.31

Abstract

Path-planning, a critical component of mobile robot navigation, comprises both local and global planning. Previous studies primarily focused on enhancing the individual performance of these planners, avoiding obstacles, and computing an optimal global path from a starting position to a target position. In this study, we introduce a practical path-planning framework that employs a target planner to bridge the local and global planners; this enables mobile robots to navigate seamlessly and efficiently toward a global target position. The proposed target planner assesses the visibility of waypoints along the global path, and it selects a reachable navigation target, which can then be used to generate efficient control commands for the local planners. A visibility-based target planner can handle situations, wherein the current, target waypoint is occupied by unknown obstacles. Real-world experiments demonstrated that the proposed pathplanning framework with the visibility-based target planner allowed the robot to navigate to the final target position along a more efficient path than the framework without a target planner.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1C1C1010931).

References

  1. R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous Mobile Robots, The MIT Press, USA, pp. 369-422, 2011.
  2. K. Fransen and J. van Eekelen, "Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating turning costs in search heuristic", Int. J. Prod. Res., Vol. 61, No. 3, pp. 707-725, 2021. https://doi.org/10.1080/00207543.2021.2015806
  3. S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning", Int. J. Rob. Res., Vol. 30, No. 7, pp. 846-894, 2011. https://doi.org/10.1177/0278364911406761
  4. S. Li and N. T. Dantam, "A sampling and learning framework to prove motion planning infeasibility", Int. J. Rob. Res., Vol. 42, No. 10, pp. 938-956, 2023. https://doi.org/10.1177/02783649231154674
  5. S. M. LaValle and J. J. Kuffner, "Randomized kinodynamic planning", Int. J. Rob. Res., Vol. 20, No. 5, pp. 378-400, 2001. https://doi.org/10.1177/02783640122067453
  6. J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, "Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic", Proc. of 2014 IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 2997-3004, Chicago, USA, 2014.
  7. D. Fox, W. Burgard, and S. Thrun, "The dynamic window approach to collision avoidance", IEEE Robot. Autom. Mag., Vol. 4, No. 1, pp. 23-33, 1997. https://doi.org/10.1109/100.580977
  8. L. Chang, L. Shan, C. Jiang, and Y. Dai, "Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment", Auton. Robots, Vol. 45, No. 1, pp. 51-76, 2021. https://doi.org/10.1007/s10514-020-09947-4
  9. J. Minguez and L. Montano, "Nearness diagram (ND) navigation: Collision avoidance in troublesome scenarios", IEEE Trans. Rob. Autom., Vol. 20, No. 1, pp. 45-59, 2004. https://doi.org/10.1109/TRA.2003.820849
  10. J. W. Durham and F. Bullo, "Smooth Nearness-Diagram Navigation", Proc. of IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), pp. 690-695, Nice, France, 2008.
  11. Y. Li, R. Jin, X. Xu, Y. Qian, H. Wang, S. Xu, and Z. Wang, "A mobile robot path planning algorithm based on improved A* algorithm and dynamic window approach", IEEE Access, Vol. 10, pp. 57736-57747, 2022. https://doi.org/10.1109/ACCESS.2022.3179397
  12. H. Ryu and Y. Park, "Improved informed RRT* using gridmap skeletonization for mobile robot path planning", Int. J. Precision Eng. Manuf., Vol. 20, No. 11, pp. 2033-2039, 2019. https://doi.org/10.1007/s12541-019-00224-8
  13. H. Ryu, "Hierarchical path-planning for mobile robots using a skeletonization-informed rapidly exploring random tree", Appl. Sci., Vol. 10, No. 21, pp. 7846(1)-7864(18), 2020.
  14. J.-L. Blanco, J. Gonzalez, and J.-A. Fernandez-Madrigal, "Optimal filtering for non-parametric observation models: Applications to localization and SLAM", Int. J. Rob. Res., Vol. 29, No. 14, pp. 1726-1742, Dec. 2010. https://doi.org/10.1177/0278364910364165
  15. https://docs.mrpt.org/reference/latest/(retrieved on May. 17, 2024).
  16. W. Hess, D. Kohler, H. Rapp, and D. Andor, "Real-time loop closure in 2d lidar slam", Proc. of 2016 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1271-1278, Stockholm, Sweden, 2016.