Browse > Article
http://dx.doi.org/10.5391/IJFIS.2010.10.3.203

Hierarchical Fuzzy Motion Planning for Humanoid Robots Using Locomotion Primitives and a Global Navigation Path  

Kim, Yong-Tae (Dept. of Information and Control Engineering, Institute for Information Technology Convergence Hankyong National University)
Publication Information
International Journal of Fuzzy Logic and Intelligent Systems / v.10, no.3, 2010 , pp. 203-209 More about this Journal
Abstract
This paper presents a hierarchical fuzzy motion planner for humanoid robots in 3D uneven environments. First, we define both motion primitives and locomotion primitives of humanoid robots. A high-level planner finds a global path from a global navigation map that is generated based on a combination of 2.5 dimensional maps of the workspace. We use a passage map, an obstacle map and a gradient map of obstacles to distinguish obstacles. A mid-level planner creates subgoals that help the robot efficiently cope with various obstacles using only a small set of locomotion primitives that are useful for stable navigation of the robot. We use a local obstacle map to find the subgoals along the global path. A low-level planner searches for an optimal sequence of locomotion primitives between subgoals by using fuzzy motion planning. We verify our approach on a virtual humanoid robot in a simulated environment. Simulation results show a reduction in planning time and the feasibility of the proposed method.
Keywords
Fuzzy motion planning; locomotion primitive; motion primitive; global navigation path; humanoid robot;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. T. Kim, S. H. Noh, “Humanoid navigation strategy using fuzzy motion planner in an uneven smart home environment”, 2007 International Symposium on Advanced Intelligent Systems, pp. 597-601, 2007.
2 Y. T. Kim, S. Candido and S. Hutchinson, “A workspace decomposition for hierarchical motion planning with humanoid robots”, The 13th International Conference on Advanced Robotics, pp. 1069-1074, 2007.
3 J. Chestnutt, J. J. Kuffner, K. Nishiwaki, and S. Kagami, “Planning biped navigation strategies in complex environments”, International Conference on Humanoid Robotics, 2003.
4 K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of Honda humanoid robot”, International Conference on Robotics and Automation, pp. 1321-1326, May 1998.   DOI
5 O. Lorch, A. Albert, J. Denk, M. Gerecke, R. Cupec, J. F. Seara, W. Gerth, and G. Schmidt, “Experiments in visionguided biped walking”, International Conference on Intelligent Robots and Systems, pp. 2489-2490, 2002.   DOI
6 Y. T. Kim, S. H. Noh, H. J. Lee, “Walking and stabilization algorithm of biped robot on the uneven ground”, Journal of Fuzzy Logic and Intelligent Systems, vol. 15, no. 1, pp. 907-913, 2005.
7 Y. Guan, K. Yokoi, N. E. Sian, and K. Tanie, “Feasibility of humanoid robots stepping over obstacles”, International Conference on Intelligent Robots and Systems, pp. 130-135, Sendai, Japan, 2004.
8 F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa K. Fujiwara, K. Harada, K. Kaneko, H. Hirukawa, and F. Tomita, “Whole body locomotion planning of humanoid robots based on a 3D grid map”, International Conference on Robotics and Automation, pp. 1072-1078, 2005.   DOI
9 J.S. Gutmann, M. Fukuchi, and M. Fujita, “A modular architecture for humanoid robot navigation”, International Conference on Humanoid Robotics, pp. 26-31, 2005.   DOI
10 Z. Shiller, K. Yamane, and Y. Nakamura, “Planning motion patterns of human figures using a multi-layered grid and the dynamics filter”, International Conference on Robotics and Automation, pp. 1-8, Seoul, Korea, 2001.   DOI
11 J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue, “Dynamically-stable motion planning for humanoid robots”, Autonomous Robots, vol. 12, no. 1, pp. 105-118, 2002.   DOI   ScienceOn
12 J. J. Kuffner, Jr., K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. “Motion planning for humanoid robots”, International Symposium on Robotics Researches, pp. 365-374, Siena, Italy, 2003.
13 H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations, MIT Press, Boston, 2005.
14 J.C. Latombe, Robot Motion Planning, Kluwer, Boston, 1991.
15 J. Chestnutt and J. J. Kuffner, “A tiered planning strategy for biped navigation”, International Conference on Humanoid Robots, pp. 422-436, 2004.   DOI
16 K. Hauser, T. Bretl, J.-C. Latombe, “Using motion primitives in probabilistic sample-based planning for humanoid robots”, Proceedings of the Workshop on the Algorithmic Foundations of Robotics, 2006.
17 J.-S. Gutmann, M. Fukuchi, and M. Fujita, “Stair climbing for humanoid robots using stereo vision”, International Conference on Intelligent Robots and Systems, pp. 1407-1413, Japan, 2004.
18 J.-S. Gutmann, M. Fukuchi, and M. Fujita, “Real-time path planning for humanoid robot navigation”, International Joint Conference on Artificial Intelligence, pp. 1232-1237, Scotland, 2005.