• Title/Summary/Keyword: global climate

Search Result 1,914, Processing Time 0.031 seconds

Development of Tree Carbon Calculator to Support Landscape Design for the Carbon Reduction (탄소저감설계 지원을 위한 수목 탄소계산기 개발 및 적용)

  • Ha, Jee-Ah;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.42-55
    • /
    • 2023
  • A methodology to predict the carbon performance of newly created urban greening plans is required as policies based on quantifying carbon performance are rapidly being introduced in the face of the climate crisis caused by global warming. This study developed a tree carbon calculator that can be used for carbon reduction designs in landscaping and attempted to verify its effectiveness in landscape design. For practical operability, MS Excel was selected as a format, and carbon absorption and storage by tree type and size were extracted from 93 representative species to reflect plant design characteristics. The database, including tree unit prices, was established to reflect cost limitations. A plantation experimental design to verify the performance of the tree carbon calculator was conducted by simulating the design of parks in the central region for four landscape design, and the causal relationship was analyzed by conducting semi-structured interviews before and after. As a result, carbon absorption and carbon storage in the design using the tree carbon calculator were about 17-82% and about 14-85% higher, respectively, compared to not using it. It was confirmed that the reason for the increase in carbon performance efficiency was that additional planting was actively carried out within a given budget, along with the replacement of excellent carbon performance species. Pre-interviews revealed that designers distrusted data and the burdens caused by new programs before using the arboreal carbon calculator but tended to change positively because of its usefulness and ease of use. In order to implement carbon reduction design in the landscaping field, it is necessary to develop it into a carbon calculator for trees and landscaping performance. This study is expected to present a useful direction for ntroducing carbon reduction designs based on quantitative data in landscape design.

Long-term and Real-time Monitoring System of the East/Japan Sea

  • Kim, Kuh;Kim, Yun-Bae;Park, Jong-Jin;Nam, Sung-Hyun;Park, Kyung-Ae;Chang, Kyung-Il
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.25-44
    • /
    • 2005
  • Long-term, continuous, and real-time ocean monitoring has been undertaken in order to evaluate various oceanographic phenomena and processes in the East/Japan Sea. Recent technical advances combined with our concerted efforts have allowed us to establish a real-time monitoring system and to accumulate considerable knowledge on what has been taking place in water properties, current systems, and circulation in the East Sea. We have obtained information on volume transport across the Korea Strait through cable voltage measurements and continuous temperature and salinity profile data from ARGO floats placed throughout entire East Sea since 1997. These ARGO float data have been utilized to estimate deep current, inertial kinetic energy, and changes in water mass, especially in the northern East Sea. We have also developed the East Sea Real-time Ocean Buoy (ESROB) in coastal regions and made continual improvements till it has evolved into the most up-to-date and effective monitoring system as a result of remarkable technical progress in data communication systems. Atmospheric and oceanic measurements by ESROB have contributed to the recognition of coastal wind variability, current fluctuations, and internal waves near and off the eastern coast of Korea. Long-tenn current meter moorings have been in operation since 1996 between Ulleungdo and Dokdo to monitor the interbasin deep water exchanges between the Japanese and Ulleung Basins. In addition, remotely sensed satellite data could facilitate the investigation of atmospheric and oceanic surface conditions such as sea surface temperature (SST), sea surface height, near-surface winds, oceanic color, surface roughness, and so on. These satellite data revealed surface frontal structures with a fairly good spatial resolution, seasonal cycle of SST, atmospheric wind forcing, geostrophic current anomalies, and biogeochemical processes associated with physical forcing and processes. Since the East Sea has been recognized as a natural laboratory for global oceanic changes and a clue to abrupt climate change, we aim at constructing a 4-D continuous real-time monitoring system, over a decade at least, using the most advanced techniques to understand a variety of oceanic processes in the East Sea.

Major Issues of Post-Kyoto Negotiation and Their Implications : An Economic Analysis by Using a CGE Model (Post-Kyoto 협상의 주요 쟁점사항과 시사점 : 연산일반균형(CGE)모형을 활용한 경제적 분석)

  • Lim, JaeKyu
    • Environmental and Resource Economics Review
    • /
    • v.18 no.3
    • /
    • pp.457-493
    • /
    • 2009
  • This paper evaluates major issues of Post-Kyoto negotiation of UNFCCC and conducted economic analysis by utilizing a computable general equilibrium(CGE) model(GTEM-KOR). It points three major agendas of the negotiation to be settled : (1) return of the US to GHG abatement commitment; (2) participation of developing countries in GHG abatement commitment; and (3) development of a comprehensive approach for post-Kyoto period. It also emphasizes the differentiation of developing countries and the type and strength of commitment as the negotiation issues for settlement of those agendas. The analysis by using GTEM-KOR shows the differentiation between developing countries based on per capita GDP and/or per capita emissions is inefficient in terms of global GHG emission reduction and it will exposure Korea to strong pressure of commitment relative to other developing countries. It also shows that the participation of developing countries such as China and India is one of the most important factors for the environmental effectiveness of the Post-Kyoto regime. It emphasizes that the relative strength of commitment and the scope of country participation rather than type of commitment are major components determining the economic and environmental effectiveness of the Post-Kyoto regime.

  • PDF

An Experimental Study for the Effective Use Scheme of Snow Removal Materials on Road (도로 제설재의 효과적 사용방안에 관한 실험적 연구)

  • Do, Jongnam;Kim, Taesoo;Lee, Chanbok;Kim, Yeonjoong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.5-17
    • /
    • 2012
  • The amount of snow due to global warming and climate change has recently increased. The effective management of snow removal materials will be required. First, on the basis of domestic winter temperature, it is not necessary to get a baseline to less than the freezing point of $-52^{\circ}C$ for the calcium chloride($CaCl_2$) of 30%.. In terms of cost comparison between calcium chloride($CaCl_2$) and sodium chloride($NaCl$), the calcium chloride($CaCl_2$) is 2 to 3 times more expensive, and the supply of the calcium chloride($CaCl_2$) is not produced in domestic country and is in the conditions that have to imports all needed. Accordingly, the effective use scheme of snow removal materials should be considered to multifaceted ways. Thus, the objective of this study is to develop effective method and to replace from calcium choride($CaCl_2$) to sodium chloride($NaCl$) solution in the current snow removal operating system that uses a pre-wetted salt spreading method. The effective method that equals to the quality of the existing snow removal materials was developed in this study through performance tests for deicing chemicals, corrosion test of steel and freezing and thawing tests of concrete.

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study (산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구)

  • Song, Hark-Soo;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Spatial Analysis of Typhoon Genesis Distribution based on IPCC AR5 RCP 8.5 Scenario (IPCC AR5 RCP 8.5 시나리오 기반 태풍발생 공간분석)

  • Lee, Sungsu;Kim, Ga Young
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.49-58
    • /
    • 2014
  • Natural disasters of large scale such as typhoon, heat waves and snow storm have recently been increased because of climate change according to global warming which is most likely caused by greenhouse gas in the atmosphere. Increase of greenhouse gases concentration has caused the augmentation of earth's surface temperature, which raised the frequency of incidences of extreme weather in northern hemisphere. In this paper, we present spatial analysis of future typhoon genesis based on IPCC AR5 RCP 8.5 scenario, which applied latest carbon dioxide concentration trend. For this analysis, we firstly calculated GPI using RCP 8.5 monthly data during 1982~2100. By spatially comparing the monthly averaged GPIs and typhoon genesis locations of 1982~2010, a probability density distribution(PDF) of the typhoon genesis was estimated. Then, we defined 0.05GPI, 0.1GPI and 0.15GPI based on the GPI ranges which are corresponding to probability densities of 0.05, 0.1 and 0.15, respectively. Based on the PDF-related GPIs, spatial distributions of probability on the typhoon genesis were estimated for the periods of 1982~2010, 2011~2040, 2041~2070 and 2071~2100. Also, we analyzed area density using historical genesis points and spatial distributions. As the results, Philippines' east area corresponding to region of latitude $10^{\circ}{\sim}20^{\circ}$ shows high typhoon genesis probability in future. Using this result, we expect to estimate the potential region of typhoon genesis in the future and to develop the genesis model.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.

Study of the Construction of a Coastal Disaster Prevention System using Deep Learning (딥러닝을 이용한 연안방재 시스템 구축에 관한 연구)

  • Kim, Yeon-Joong;Kim, Tae-Woo;Yoon, Jong-Sung;Kim, Myong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.590-596
    • /
    • 2019
  • Numerous deaths and substantial property damage have occurred recently due to frequent disasters of the highest intensity according to the abnormal climate, which is caused by various problems, such as global warming, all over the world. Such large-scale disasters have become an international issue and have made people aware of the disasters so they can implement disaster-prevention measures. Extensive information on disaster prevention actively has been announced publicly to support the natural disaster reduction measures throughout the world. In Japan, diverse developmental studies on disaster prevention systems, which support hazard map development and flood control activity, have been conducted vigorously to estimate external forces according to design frequencies as well as expected maximum frequencies from a variety of areas, such as rivers, coasts, and ports based on broad disaster prevention data obtained from several huge disasters. However, the current reduction measures alone are not sufficiently effective due to the change of the paradigms of the current disasters. Therefore, in order to obtain the synergy effect of reduction measures, a study of the establishment of an integrated system is required to improve the various disaster prevention technologies and the current disaster prevention system. In order to develop a similar typhoon search system and establish a disaster prevention infrastructure, in this study, techniques will be developed that can be used to forecast typhoons before they strike by using artificial intelligence (AI) technology and offer primary disaster prevention information according to the direction of the typhoon. The main function of this model is to predict the most similar typhoon among the existing typhoons by utilizing the major typhoon information, such as course, central pressure, and speed, before the typhoon directly impacts South Korea. This model is equipped with a combination of AI and DNN forecasts of typhoons that change from moment to moment in order to efficiently forecast a current typhoon based on similar typhoons in the past. Thus, the result of a similar typhoon search showed that the quality of prediction was higher with the grid size of one degree rather than two degrees in latitude and longitude.

Effect of PVP on CO2/N2 Separation Performance of Self-crosslinkable P(GMA-g-PPG)-co-POEM) Membranes (자가가교형 P(GMA-g-PPG)-co-POEM) 분리막의 이산화탄소/질소 분리 성능에 대한 PVP의 영향)

  • Kim, Na Un;Park, Byeong Ju;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.2
    • /
    • pp.113-120
    • /
    • 2018
  • Global warming due to indiscriminate carbon dioxide emissions has a profound impact on human life by causing abnormal climate change and ecosystem destruction. As a way to reduce carbon dioxide emissions, in this study, we presented a polymeric membrane prepared by blending a self-crosslinkable P(GMA-g-PPG)-co-POEM (SP) copolymer and commercial polymer polyvinylpyrrolidone (PVP). As the content of PVP increased, it was observed that the gas permeance decreased and $CO_2/N_2$ selectivity increased. At 30 wt% PVP content, the $CO_2$ permeance of the membrane decreased from 72.9 GPU of pure SP polymer to 12.6 GPU, while $CO_2/N_2$ selectivity improved by 79% from 28.1 to 50.4. It results from the hydrogen bonding between the SP copolymer and PVP, leading to more compact structure of the polymer chains, which was confirmed by FT-IR, TGA, XRD and SEM analysis. Therefore, we suggest that the permeance and selectivity of the membranes can be easily adjusted as desired by controlling the PVP content in the SP/PVP polymer blend.