DOI QR코드

DOI QR Code

Spatial Analysis of Typhoon Genesis Distribution based on IPCC AR5 RCP 8.5 Scenario

IPCC AR5 RCP 8.5 시나리오 기반 태풍발생 공간분석

  • Lee, Sungsu (Civil engineering, Chungbuk National University) ;
  • Kim, Ga Young (Civil engineering, Chungbuk National University)
  • Received : 2014.06.03
  • Accepted : 2014.08.22
  • Published : 2014.08.31

Abstract

Natural disasters of large scale such as typhoon, heat waves and snow storm have recently been increased because of climate change according to global warming which is most likely caused by greenhouse gas in the atmosphere. Increase of greenhouse gases concentration has caused the augmentation of earth's surface temperature, which raised the frequency of incidences of extreme weather in northern hemisphere. In this paper, we present spatial analysis of future typhoon genesis based on IPCC AR5 RCP 8.5 scenario, which applied latest carbon dioxide concentration trend. For this analysis, we firstly calculated GPI using RCP 8.5 monthly data during 1982~2100. By spatially comparing the monthly averaged GPIs and typhoon genesis locations of 1982~2010, a probability density distribution(PDF) of the typhoon genesis was estimated. Then, we defined 0.05GPI, 0.1GPI and 0.15GPI based on the GPI ranges which are corresponding to probability densities of 0.05, 0.1 and 0.15, respectively. Based on the PDF-related GPIs, spatial distributions of probability on the typhoon genesis were estimated for the periods of 1982~2010, 2011~2040, 2041~2070 and 2071~2100. Also, we analyzed area density using historical genesis points and spatial distributions. As the results, Philippines' east area corresponding to region of latitude $10^{\circ}{\sim}20^{\circ}$ shows high typhoon genesis probability in future. Using this result, we expect to estimate the potential region of typhoon genesis in the future and to develop the genesis model.

최근 전 세계적으로 지구온난화에 따른 기후변화로 태풍, 폭염, 폭설등과 같은 자연재해의 피해가 대규모로 확대되고 있다. 근본적으로 지구온난화를 유발하는 가장 큰 원인은 대기 중의 온실가스를 들 수 있으며, 온실가스의 농도 증가로 인해 우리나라가 속해있는 북반구는 점점 더 지구표면온도가 증가하고 있고, 그에 따른 극한 기상 발생률이 크게 증가하고 있다. 본 연구에서는 최근 이산화탄소 농도 추세를 반영한 RCP(Representative Concentration Pathway) 8.5 시나리오를 이용하여 미래의 태풍발생의 공간분포를 추정하였다. 공간분포를 추정하기 위해 먼저 RCP 8.5 월 자료를 사용하여 1982~2100년 기간 동안의 태풍발생지수(GPI; Genesis Potential Index)를 계산하였다. 1982~2010년 동안 발생한 태풍의 발생위치정보와 월평균 GPI 값을 이용하여 태풍발생의 확률분포(PDF)를 추정하였으며, PDF의 0.05, 0.1 및 0.15에 해당하는 GPI의 범위를 설정하여 0.05GPI, 0.1GPI 및 0.15GPI로 정의하였다. 이를 바탕으로 1982~2010년, 2011~2040년, 2041~2070년, 2071~2100년의 태풍발생의 공간 확률 분포를 추정 하였으며, 공간 확률 분포와 함께 과거 태풍발생정보를 이용하여 공간밀도를 분석하였다. 분석 결과, 미래에 태풍이 발생할 가능성이 높은 지역이 필리핀의 동쪽에 위치한 위도 $10^{\circ}{\sim}20^{\circ}$ 영역으로 나타났다. 이러한 결과를 통해 추후 미래의 태풍발생 가능지역을 추정하고, 이를 기반으로 태풍의 경로를 추정하는데 활용하여 태풍의 발생 위치에 따라 한반도에 미치는 영향을 추정하는데 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Korea Meteorological Administration. 2013, Report of Global Atmosphere Watch 2012, Korea.
  2. Hwang, I. S. 2005, Study on the Kyoto Protocol and the corresponding system of Korea-Focusing on new renewable energy policy, Master's Degree Thesis, Ulsan University.
  3. IPCC. 2007, Climate Change 2007, Report of the Intergovernmental Panel on Climate Change, IPCC.
  4. National Institute Meteorological Research. 2011, Climate Change Scenario Report, Korea.
  5. Bister, M; Emanuel, K. A. 2002, Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability, Journal of Geophysical Research, 107(D24):ACL 26-1-ACL26-15.
  6. Emanuel, K. A; Nolan, D. S. 2004, Tropical cyclone activity and the global climate system, Paper presented at the 26th conference on Hurricanes and Tropical Meteorology, Miami, May 2.
  7. Camargo, S. J; Emanuel, K. A; Sobel, A. H. 2007, Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20(19):4819-4834. https://doi.org/10.1175/JCLI4282.1
  8. Kim, H. M; Lee, M. I; Peter J. Webster; Kim, D; Yoo, J. H. 2013, A Physical Basis for the Probabilistic Prediction of the Accumulated Tropical Cyclone Kinetic Energy in the western North Pacific, Journal of Climate, 26(20):7981-7991. https://doi.org/10.1175/JCLI-D-12-00679.1
  9. Park, D. S; Ho, C. H; Kim, J. H. 2014, Growing threat of intense tropical cyclones to East Asia over the period 1977-2010, Environmental Research letters, 9(1):014008. https://doi.org/10.1088/1748-9326/9/1/014008
  10. Korea Meteorological Administration. 2007, Development and use of typhoon occurrence predictive guidance.
  11. Xun Guo Lin. 2004, Probabilistic framework of cyclone risk assessment, Paper presented at the 5th annual meeting for the Asia Pacific Industrial Engineering and Management Systems Conference, Australia, December 12-15.
  12. Hall, T. M; Jewson, S. 2007, Statistical modelling of North Atlantic Tropical cyclone tracks, Tellus, 59A:486-498.
  13. Rumpf, J; Weindl, H; Hoppe, P; Rauch, E; Schmidt, V. 2007, Stochastic modelling of tropical cyclone tracks, Mathematical Methods of Operations Research, 66(3):475-490. https://doi.org/10.1007/s00186-007-0168-7
  14. Park, J, H; Lee, G. S; Yang, J. S; Kim, S. W. 2012, Journal of Korea Spatial Information Society, 20(3):39-50.
  15. Shin, H.; Chang, E; Hong, S, 2014, Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics, Journal of Korea Spatial Information Society, 22(1): 55-63. https://doi.org/10.12672/ksis.2014.22.1.055

Cited by

  1. RCP시나리오 기반 CMIP5 GCMs을 이용한 동북아시아 미래 기후변화 불확실성 평가 vol.24, pp.3, 2015, https://doi.org/10.14249/eia.2015.24.3.205