DOI QR코드

DOI QR Code

Sensitivity Analysis on Ecological Factors Affecting Forest Fire Spreading: Simulation Study

산불확산에 영향을 미치는 생태학적 요소들간의 민감도 분석: 시뮬레이션 연구

  • Received : 2013.08.28
  • Accepted : 2013.09.23
  • Published : 2013.09.30

Abstract

Forest fires are expected to increase in severity and frequency under global climate change and thus better understanding of fire dynamics is critical for mitigation and adaptation. Researchers with different background, such as ecologists, physicists, and mathematical biologists, have developed various simulation models to reproduce forest fire spread dynamics. However, these models have limitations in the fire spreading because of the complicated factors such as fuel types, wind, and moisture. In this study, we suggested a simple model considering the wind effect and two different fuel types. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space with a density ranging from 0.0 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by wind and tree density. The statistical analysis showed that the total tree density had greatest effect on the forest fire spreading and wind had the next greatest effect. The density of the susceptible tree was relatively lower factor affecting the forest fire. We believe that our model can be a useful tool to explore forest fire spreading patterns.

산불은 대표적인 산림생태계의 재해 중 하나로 최근, 우리나라에서도 빈번하게 발생하고 있으며, 일반적으로 광범위한 지역에 빠른 속도로 확산되는 특징을 가지고 있다. 바람 및 나무의 종류, 다양한 지형 요소들이 산불 발생 시 급진적 확산에 영향을 주는 요소들이다. 산불의 빠른 확산은 생태계 교란 및 재산 피해, 인명 피해 등을 야기 시킨다. 이러한 이유로, 최근 산불에 관련된 연구가 활발하게 진행되고 있다. 본 연구에서는 바람 요인이 고려된 산불 패턴 가상 시뮬레이션 단순 모델을 제안하였고, 셀룰라오토마타(Cellular Automata)의 격자 기반으로 구성 되었다. 모델의 시뮬레이션을 통하여, 바람의 세기 변화, 주어진 공간에 분포해 있는 나무 전체의 밀도, 그리고, 나무들 가운데 가연성이 높은 나무의 밀도가 산불확산에 미치는 영향을 조사하였다. 민감도 분석 결과, 전체 나무 밀도가 세 가지 요소 중 산불확산에 가장 민감하게 기여하였으며, 그 다음으로는 바람의 영향, 마지막으로 가연성이 높은 나무의 밀도 순으로 나타났다. 본 연구에서 제안한 산불확산 시뮬레이션 모델 및 분석 결과는 실제 산불 확산 및 억제 전략 수립에 활용되어 질 수 있을 것으로 여겨지며, 아울러 좀 더 현실적인 생태학적 요소들을 모델에 고려함으로써 산불확산 예측 연구에도 이용되어 질 수 있을 것으로 판단된다.

Keywords

References

  1. Ball, G. L., and D. P. Guertin, 1992: Improved fire growth modeling. International Journal Wildland Fire 2(2), 47-54. doi: 10.1071/WF9920047
  2. Babak, P., A. Bourlioux, and T. Hillen, 2009: The effect of wind on the propagation of an idealized forest fire. SIAM Journal of Applied Mathematics 70(4), 1364-1388. https://doi.org/10.1137/080727166
  3. Beer, T., 1991: Bushfire rate-of-spread forecasting: Deterministic and statistical approaches to fire modeling. Journal of Forecasting 10(3), 301-317. doi: 10.1002/for.3980100306
  4. Berjak, S. G., and J. W. Hearne, 2002: An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecological Modelling 148(2), 133-151. https://doi.org/10.1016/S0304-3800(01)00423-9
  5. Boychuk, D., W. J. Braun, R. J. Kulperger, Z. L. Krougly, and D. A. Stanford, 2009: A stochastic forest fire growth model. Environmental and Ecological Statistics 16(2), 133-151. doi: 10.1007/s10651-007-0079-z
  6. Cacuci, D. G., M. Ionescu-Bujor, and M. Navon, 2005: Sensitivity and Uncertainty Analysis, Volume II: Applications to Large-Scale Systems, Chapman & Hall/CRC Press. Boca Raton.
  7. Clark, T. L., M. A. Jenkins, J. Coen, and D. Packham, 1996: A coupled atmospheric fire model: convective feedback on fire-line dynamics. Journal of Applied Meteorology 35(6), 875-901. https://doi.org/10.1175/1520-0450(1996)035<0875:ACAMCF>2.0.CO;2
  8. Diaz-Delgado, R., F. Lloret, X. Pons, and J. Terradas, 2002: Satellite evidence of decreasing resilience in mediterranean plant communities after recurrent wildfires. Ecology 83(8), 2293-2303. https://doi.org/10.1890/0012-9658(2002)083[2293:SEODRI]2.0.CO;2
  9. Grievank, A., and A. Walther, 2008: Evaluating derivatives: Principles and techniques of algorithmic differentiation (2nd ed.). SIAM publisher. Philadelphia. USA.
  10. Eastman, J. R., 2003: IDRISI Kilimanjaro Guide to GIS and Image Processing. Clark Labs Clark University, 13-19.
  11. Encinas, A. H., L. H. Encinas, S. H. White, A. M. del Rey, and G. R. Sanchez, 2007: Simulation of forest fire fronts using cellular automata. Advances in Engineering Software 38(6), 372-378. https://doi.org/10.1016/j.advengsoft.2006.09.002
  12. Feunekes, U., 1991: Error analysis in fire simulation models. Master of Science Thesis, University of New Brunswick, Canada.
  13. Flannigan, M. D., B. J. Stocks, and B. M. Wotton, 2000: Climate change and forest fires. Science of the Total Environment 262(3), 221-229. https://doi.org/10.1016/S0048-9697(00)00524-6
  14. Grassberger, P., 2002: Critical behavior of the Drossel-Schwabl forest fire model. New Journal of Physics 4(17), 1-15. doi: 10.1088/1367-2630/4/1/317
  15. Halada, L., and P. Weisenpacher, 2005: Principles of forest fire spread models and their simulation. Journal of the Applied Mathematics, Statistics and Informatics 1(1), 3-13.
  16. Hargrove, W. W., R. H. Gardner, M. G. Turner, W. H. Romme, and D. G. Despain, 2000: Simulating fire patterns in heterogeneous landscapes. Ecological Modelling 135(2-3), 243-263. https://doi.org/10.1016/S0304-3800(00)00368-9
  17. Karafyllidis, I., A. Thanailakis, 1997: A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99(1), 87-97. https://doi.org/10.1016/S0304-3800(96)01942-4
  18. Loibl, W., and T. Toetzer, 2003: Modeling growth and densification processes in suburban regions-simulation of landscape transition with spatial agents. Ecological Modelling & Software 18(6), 553-563. https://doi.org/10.1016/S1364-8152(03)00030-6
  19. Malamud, B. D., G. Morein, and D. L. Turcotte, 1998: Forest fires: an example of self-organized critical behavior. Science 281(5384), 1840-1842. doi: 10.1126/science. 281.5384.1840
  20. Malamud, B. D., G. Morein, and D. L. Turcotte, 2005: Log-periodic behavior in a forest-fire model. Nonlinear Processes in Geophysics 12, 575-585. doi: 10.5194/npg-12-575-2005
  21. Matsinos, Y. G., and A. Y. Troumbis, 2002: Modelling spatiotemporal dynamics of a community of annual plant species: implications for management of biodiversity. Ecological Modelling 149(2), 71-83. https://doi.org/10.1016/S0304-3800(01)00515-4
  22. McCoy, V. M., and C. R. Burn, 2005: Potential alteration by climate change of the forest-fire regime in the boreal forest of central Yukon Territory. Arctic 58(3), 276-285.
  23. Ntaimo, L., B. P. Zeigler, M. J. Vasconcelos, and B. Khargharia, 2004: Forest fire spread and suppression in DEVS. Simulation 80(10), 479-500. https://doi.org/10.1177/0037549704050918
  24. Piñol, J., J. Terradas, and F. Lloret, 1998: Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern spain. Climatic Change 38(3), 345-357. https://doi.org/10.1023/A:1005316632105
  25. Pitts, W. M., 1991: Wind effects on fires. Progress in Energy and Combustion Science 17(2), 83-134. https://doi.org/10.1016/0360-1285(91)90017-H
  26. Ratz, A., 1995: Long-term spatial patterns created by fire: a model oriented towards boreal forests. International Journal of Wildland Fire 5(1), 25-34. doi: 10.1071/WF9950025
  27. Vasconcelos, M. J., and D. P. Guertin, 1992: Firemap - simulation of fire growth with a geographic information system. International Journal Wildland Fire 2(2), 87-96. doi: 10.1071/WF9920087