• Title/Summary/Keyword: glioma cell

Search Result 199, Processing Time 0.029 seconds

Lgr4 Promotes Glioma Cell Proliferation through Activation of Wnt Signaling

  • Yu, Chun-Yong;Liang, Guo-Biao;Du, Peng;Liu, Yun-Hui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4907-4911
    • /
    • 2013
  • The key signaling networks regulating glioma cell proliferation remain poorly defined. The leucine-rich repeat containing G-protein coupled receptor 4 (Lgr4) has been implicated in intestinal, gastric, and epidermal cell functions. We investigated whether Lgr4 functions in glioma cells and found that Lgr4 expression was significantly increased in glioma tissues. In addition, Lgr4 overexpression promoted while its knockdown using small interfering RNA oligos inhibited glioma cell proliferation. In addition, Wnt/${\beta}$-catenin signaling was activated in cells overexpressing Lgr4. Therefore, our results revealed that Lgr4 activates Wnt/${\beta}$-catenin signaling to regulate glioma cell proliferation.

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

Glioma-Associated Oncogene Homolog1 (Gli1)-Aquaporin1 pathway promotes glioma cell metastasis

  • Liao, Zheng-qiang;Ye, Ming;Yu, Pei-gen;Xiao, Chun;Lin, Feng-yun
    • BMB Reports
    • /
    • v.49 no.7
    • /
    • pp.394-399
    • /
    • 2016
  • Glioma-Associated Oncogene Homolog1 (Gli1) is known to be activated in malignant glioma; however, its downstream pathway has not been fully explained. The aim of this study was to explore the role of Gli1-Aquaporin1 (AQP1) signal pathway in glioma cell survival. Our data suggests that both Gli1 and AQP1 are upregulated in glioma tissues, as in comparison to in normal tissues. These up-regulation phenomena were also observed in glioma U251 and U87 cells. It was demonstrated that Gli1 positively regulated the AQP1 expression. By luciferase reporter gene and ChIP assay, we observed that this modulation process was realized by combination of Gli1 with AQP1 promotor. In addition, knock down of Gli1 by siRNA interference reduced the viability of glioma cells as well as suppressed cell metastasis. Also, the inhibitory effects of cell survival by silenced Gli1 were abrogated by AQP1 overexpression. In summary, glioma cell survival is a regulatory process and can be mediated by Gli1-AQP1 pathway.

Cytotoxic Effect of Hexavalent Chromium on C6 Glioma Cells

  • Suk Seung-Han
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.261-265
    • /
    • 2006
  • Toxic effect of Hexavalent chromium $(CrO_3)$ on various cells and organs has been well recognized. However, the mechanism and degree of cytotoxicity of $CrO_3$ remain unclear. This study was performed to examine the cytotoxicity of $CrO_3$ on $C_6$ glioma cells by measuring cell viability. The XTT assay, one of the sensitive methods to determine the cell viability, was taken to examine the viability of glioma cells treated with $CrO_3$. In this study, not only decreased the number of glioma cells but morphologic changes of them were noted and cell viability decreased in a time and dose-dependent manner after treated with various concentrations of $CrO_3$ for 48hours. $IC_{90}\;and\;IC_{50}$ values in XTT assay were determined at $25{\mu}M\;and\;55{\mu}M$ $CrO_3$, respectively. These results suggest that Hexavalent chromium has a highly cytotoxic effect and has a time and dose-dependent cytotoxicity on $C_6$ glioma cells.

  • PDF

The Anti-Migratory Effect of Cirsium japonicum Pharmacopuncture in C6 Glioma Cell (대계 약침액의 C6 신경교종 세포에 대한 이주 억제 효과)

  • Park, Juyeon;Lee, Kangpa;Chang, Haeryong;Moon, Jinyoung
    • Korean Journal of Acupuncture
    • /
    • v.30 no.4
    • /
    • pp.212-219
    • /
    • 2013
  • Objectives : Cirsium japonicum is a traditional Korean medicine that has been used in the treatment of inflammatory diseases such as appendicitis, hepatitis, pulmonary abscess and tumor. The aim of study was to elucidate anti-migratory activity of CJP(Cirsium japonicum pharmacopuncture) through regulation of inflammatory mediators in C6 glioma cell. Methods : Nitric oxide(NO) production was determined by using nitrite assay. The cell migration was analyzed by wound-healing assay and Boyden chamber assay. The expression levels of iNOS, and protein kinase C(PKC)-${\alpha}$ were measured by western blotting assay. Results : CJP showed a significant decrease on NO production. Moreover, glioma cell migration was effectively suppressed by CJP. Furthermore, CJP inhibited the expressions of iNOS and PKC-${\alpha}$ in C6 glioma cells. Conclusions : These results suggest that CJP inhibits glioma cell migration and iNOS expression through regulation of PKC-${\alpha}$. Therefore, it is expected that CJP could be an effective agents for blocking malignant progression of glioma.

Effect of Fructus ligustri Lucidi Extract on Cell Viability in Human Glioma Cells

  • Kim, Jin-Won;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.199-205
    • /
    • 2009
  • It is unclear whether Fructus ligustri Lucidi (FLL) extract anti-proliferative effect in human glioma cells. The present study was therefore undertaken to examine the effect of FLL on cell viability and to determine the underlying mechanism in A172 human glioma cells. Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Apoptosis was measured by Annexin-V binding assay and cell cycle analysis. Activation of kinases and caspase-3 was estimated by Western blot analysis. FLL resulted in apoptotic cell death in a dose- and time-dependent manner. FLL-induced cell death was not associated with reactive oxygen species generation. Western blot analysis showed that FLL treatment caused down-regulation of PI3K/Akt pathway, but not ERK. The PI3K/Akt inhibitor LY984002 sensitized the FLL-induced cell death and overexpression of Akt prevented the cell death. FLL induced caspase-3 activation and the FLL-induced cell death was prevented by caspase inhibitors. These findings indicate that FLL results in a caspase-dependent cell death through a P13K/Akt pathway in human glioma cells. These data suggest that FLL may serve as a potential therapeutic agent for malignant human gliomas.

Effect of Lycii cortex radicis Extraction on Glioma Cell Viability

  • Kim, Seang-Jae;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.30 no.6
    • /
    • pp.17-26
    • /
    • 2009
  • Objectives: Little information is available regarding the effect of Lycii cortex radicis (LCR) on cell viability in glioma cells. This study was therefore undertaken to examine the effect of LCR on cell survival in U87MG human glioma cells. Methods: Cell viability and cell death were estimated by MTT assay and trypan blue exclusion assay, respectively. Reactive oxygen species (ROS) generation was measured using the fluorescence probe DCFH-DA. Activation of Akt and extracellular signal-regulated kinase (ERK) and activation of caspase-3 were estimated by Western blot analysis. Results: LCR resulted in apoptotic cell death in a dose- and time-dependent manner. LCR increased reactive oxygen species (ROS) generation and LCR-induced cell death was also prevented by antioxidants, suggesting that ROS generation played a critical role in LCR-induced cell death. Western blot analysis showed that LCR treatment caused down-regulation of Akt and ERK. The LCR-induced cell death was increased by the inhibitors of Akt and ERK. Activation of caspase-3 was stimulated by LCR and caspase inhibitors prevented the LCR-induced cell death. Conclusion: These findings suggest that LCR results in human glioma cell death through a mechanism involving ROS generation, down-regulation of Akt and ERK, and caspase activation.

  • PDF

Modulation of Cytotoxicity by Nitric Oxide Donors during Treatment of Glioma with Anticancer Drugs

  • Park, Jeong-Jae;Kang, Jong-Sool;Lee, Hyun-Sung;Lee, Jong-Soo;Lee, Young-Ha;Youm, Jin-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.5
    • /
    • pp.366-374
    • /
    • 2005
  • Objective : Nitric oxide[NO] is implicated in a wide range of biological processes in tumors and is produced in glioma. To investigate the role of NO and its interaction with the tumoricidal effects of anticancer drugs, we study the antitumor activities of NO donors, with or without anticancer drugs, in human glioma cell lines. Methods : U87MG and U373MG cells were treated with the NO donors sodium nitroprusside[SNP] and S-nitroso-N-acetylpenicillamine[SNAP], alone or in combination with the anticancer drugs 1,3-bis[2-chloroethyl]-1-nitrosourea[BCNU] and cisplatin. Cell viability, cell proliferation, DNA fragmentation, nitrite level, and the expression of Bcl-2 and Bax were determined. Results : NO was markedly increased after treatment with SNP or SNAP; however, the addition of the anticancer drugs did not significantly affect NO production NO donors or anticancer drugs reduced glioma cell viability and, in combination, acted synergistically to further decrease cell viability in a dose- and time-dependent manner. Cell proliferation was inhibited and apoptosis were enhanced by combined treatment. Bax expression was increased by combined treatment, whereas Bcl-2 expression was reduced. The antitumor cytotoxicity of NO donors and anticancer drugs differed according to cell type. Conclusion : BCNU or cisplatin can inhibit cell viability and proliferation of glioma cells and can induce apoptosis. These effects are further enhanced by the addition of a NO donor which modulates the antitumor cytotoxicity of chemotherapy depending on cell type. Further biological, chemical, and toxicological studies of NO are required to clarify its mechanism of action in glioma.

Induction of Apoptosis in Glioma Cells and Upregulation of Fas Expression Using the Human Interferon-β Gene

  • Guo, Yan;Wang, Gan;Gao, Wen-Wei;Cheng, Shi-Wen;Wang, Ren;Ju, Shi-Ming;Cao, He-Li;Tian, Heng-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2837-2840
    • /
    • 2012
  • We investigated whether IFN-${\beta}$ inhibits the growth of human malignant glioma and induces glioma cell apoptosis using the human IFN-${\beta}$ gene transfected into glioma cells. A eukaryonic expression vector ($pSV2IFN{\beta}$) for IFN-${\beta}$ was transfected into the glioma cell line SHG44 using liposome transfection. Stable transfection and IFN-${\beta}$ expression were confirmed using an enzyme-linked immunosorbent assay (ELISA). Cell apoptosis was also assessed by Hoechst staining and electron microscopy. In vivo experiments were used to establish a SHG44 glioma model in nude mice. Liposomes containing the human IFN-${\beta}$ gene were injected into the SHG44 glioma of nude mice to observe glioma growth and calculate tumor size. Fas expression was evaluated using immunohistochemistry. The IFN-${\beta}$ gene was successfully transfected and expressed in the SHG44 glioma cells in vitro. A significant difference in the number of apoptotic cells was observed between transfected and non-transfected cells. Glioma growth in nude mice was inhibited in vivo, with significant induction of apoptosis. Fas expression was also elevated. The IFN-${\beta}$ gene induces apoptosis in glioma cells, possibly through upregulation of Fas. The IFN-${\beta}$ gene modulation in the Fas pathway and apoptosis in glioma cells may be important for the treatment of gliomas.

Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation

  • Ma, Ji-wei;Zhang, Yong;Ye, Ji-cheng;Li, Ru;Wen, Yu-Lin;Huang, Jian-xian;Zhong, Xue-yun
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.186-193
    • /
    • 2017
  • Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase.