Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.044

Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation  

Ma, Ji-wei (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
Zhang, Yong (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
Ye, Ji-cheng (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
Li, Ru (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
Wen, Yu-Lin (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
Huang, Jian-xian (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
Zhong, Xue-yun (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
Publication Information
Biomolecules & Therapeutics / v.25, no.2, 2017 , pp. 186-193 More about this Journal
Abstract
Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase.
Keywords
Tetrandrine; Glioma; Radiosensitization; Proliferation; ERK;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chen, X. L., Ren, K. H., He, H. W. and Shao, R. G. (2008) Involvement of PI3K/AKT/GSK3beta pathway in tetrandrine-induced G1 arrest and apoptosis. Cancer Biol. Ther. 7, 1073-1078.   DOI
2 Cho, H. S., Chang, S. H., Chung, Y. S., Shin, J. Y., Park, S. J., Lee, E. S., Hwang, S. K., Kwon, J. T., Tehrani, A. M., Woo, M., Noh, M. S., Hanifah, H., Jin, H., Xu, C. X. and Cho, M. H. (2009) Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J. Vet. Sci. 10, 23-28.   DOI
3 Michalski, A., Bouffet, E., Taylor, R. E., Hargrave, D., Walker, D., Picton, S., Robinson, K., Pizer, B. and Bujkiewicz, S. (2010) The addition of high-dose tamoxifen to standard radiotherapy does not improve the survival of patients with diffuse intrinsic pontine glioma. J. Neurooncol. 100, 81-88.   DOI
4 Ng, L. T., Chiang, L. C., Lin, Y. T. and Lin, C. C. (2006) Antiproliferative and apoptotic effects of tetrandrine on different human hepatoma cell lines. Am. J. Chin. Med. 34, 125-135.   DOI
5 Ostrom, Q. T., Gittleman, H., Stetson, L., Virk, S. M. and Barnholtz-Sloan, J. S. (2015) Epidemiology of gliomas. Cancer Treat. Res. 163, 1-14.
6 Park, H. S., You, G. E., Yang, K. H., Kim, J. Y., An, S., Song, J. Y., Lee, S. J., Lim, Y. K. and Nam, S. Y. (2015) Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur. J. Cell Biol. 94, 653-660.   DOI
7 Stepanenko, A. A., Andreieva, S. V., Korets, K. V., Mykytenko, D. O., Baklaushev, V. P., Chekhonin, V. P. and Dmitrenko, V. V. (2016) mTOR inhibitor temsirolimus and MEK1/2 inhibitor U0126 promote chromosomal instability and cell type-dependent phenotype changes of glioblastoma cells. Gene 579, 58-68.   DOI
8 Sun, X., Xu, R., Deng, Y., Cheng, H., Ma, J., Ji, J. and Zhou, Y. (2007a) Effects of tetrandrine on apoptosis and radiosensitivity of nasopharyngeal carcinoma cell line CNE. Acta Biochim. Biophys. Sin. (Shanghai) 39, 869-878.   DOI
9 Du, W., Pang, C., Xue, Y., Zhang, Q. and Wei, X. (2015) Dihydroartemisinin inhibits the Raf/ERK/MEK and PI3K/AKT pathways in glioma cells. Oncol. Lett. 10, 3266-3270.   DOI
10 Dai, X. F., Ding, J., Zhang, R. G., Ren, J. H., Ma, C. M. and Wu, G. (2013) Radiosensitivity enhancement of human hepatocellular carcinoma cell line SMMC-7721 by sorafenib through the MEK/ERK signal pathway. Int. J. Radiat. Biol. 89, 724-731.   DOI
11 Kuipers, G. K., Slotman, B. J., Wedekind, L. E., Stoter, T. R., Berg, J., Sminia, P. and Lafleur, M. V. (2007) Radiosensitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int. J. Radiat. Biol. 83, 677-685.   DOI
12 Ferrante, A., Seow, W. K., Rowan-Kelly, B. and Thong, Y. H. (1990) Tetrandrine, a plant alkaloid, inhibits the production of tumour necrosis factor-alpha (cachectin) hy human monocytes. Clin. Exp. Immunol. 80, 232-235.
13 Gao, J. L., Ji, X., He, T. C., Zhang, Q., He, K., Zhao, Y., Chen, S. H. and Lv, G. Y. (2013) Tetrandrine suppresses cancer angiogenesis and metastasis in 4T1 tumor bearing mice. Evid. Based Complement. Alternat. Med. 2013, 265061.
14 Huang, Y. C., Wei, K. C., Chang, C. H., Yang, J. T., Ho, J. T., Shen, C. C., Su, C. F., Cho, D. Y., Ma, H. I., Lin, J. W., Lee, E. J., Wu, J. J., Tsai, M. D., Chang, C. K., Howng, S. L. and Chang, C. N. (2011) A retrospective survey of patients with malignant gliomas treated in the neuro-oncological care system under the Universal National Health Insurance program in Taiwan. J. Clin. Neurosci. 18, 784-788.   DOI
15 Lee, J. H., Kang, G. H., Kim, K. C., Kim, K. M., Park, D. I., Choi, B. T., Kang, H. S., Lee, Y. T. and Choi, Y. H. (2002) Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Int. J. Oncol. 21, 1239-1244.
16 Wu, K., Zhou, M., Wu, Q. X., Yuan, S. X., Wang, D. X., Jin, J. L., Huang, J., Yang, J. Q., Sun, W. J., Wan, L. H. and He, B. C. (2015) The role of IGFBP-5 in mediating the anti-proliferation effect of tetrandrine in human colon cancer cells. Int. J. Oncol. 46, 1205-1213.   DOI
17 Sun, X. C., Cheng, H. Y., Deng, Y. X., Shao, R. G. and Ma, J. (2007b) Tetrandrine: a potent abrogator of G2 checkpoint function in tumor cells and its mechanism. Biomed. Environ. Sci. 20, 495-501.
18 Sun, Y., Liu, W. Z., Liu, T., Feng, X., Yang, N. and Zhou, H. F. (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35, 600-604.   DOI
19 Wu, J. M., Chen, Y., Chen, J. C., Lin, T. Y. and Tseng, S. H. (2010) Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Lett. 287, 187-195.   DOI
20 Xiao, W., Graham, P. H., Power, C. A., Hao, J., Kearsley, J. H. and Li, Y. (2012) CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clin. Exp. Metastasis 29, 1-9.   DOI
21 Xiao, W., Jiang, Y., Men, Q., Yuan, L., Huang, Z., Liu, T., Li, W. and Liu, X. (2015) Tetrandrine induces G1/S cell cycle arrest through the ROS/Akt pathway in EOMA cells and inhibits angiogenesis in vivo. Int. J. Oncol. 46, 360-368.   DOI
22 Yu, J., Liu, F., Sun, M., Sun, Z. and Sun, S. (2011) Enhancement of radiosensitivity and the potential mechanism on human esophageal carcinoma cells by tetrandrine. Cancer Biother. Radiopharm. 26, 437-442.   DOI
23 Liu, W., Kou, B., Ma, Z. K., Tang, X. S., Lv, C., Ye, M., Chen, J. Q., Li, L., Wang, X. Y. and He, D. L. (2015) Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells. Asian J. Androl. 17, 850-853.
24 Li, T., Song, T., Ni, L., Yang, G., Song, X., Wu, L., Liu, B. and Liu, C. (2014) The p-ERK-p-c-Jun-cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract. Biochem. Biophys. Res. Commun. 453, 316-320.   DOI
25 Liang, X., So, Y. H., Cui, J., Ma, K., Xu, X., Zhao, Y., Cai, L. and Li, W. (2011) The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J. Radiat. Res. 52, 380-386.   DOI
26 Lin, Y., Wang, Y., Liu, X., Yan, J., Su, L. and Liu, X. (2016) A novel derivative of tetrandrine (H1) induces endoplasmic reticulum stressmediated apoptosis and prosurvival autophagy in human non-small cell lung cancer cells. Tumour Biol. 37, 10403-10413.   DOI
27 Ma, J. W., Zhang, Y., Li, R., Ye, J. C., Li, H. Y., Zhang, Y. K., Ma, Z. L., Li, J. Y., Zhong, X. Y. and Yang, X. (2015) Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation. Eur. J. Pharmacol. 764, 228-239.   DOI
28 Asati, V., Mahapatra, D. K. and Bharti, S. K. (2016) PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur. J. Med. Chem. 109, 314-341.   DOI
29 McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Franklin, R. A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M. C., Fagone, P., Nicoletti, F., Basecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L. and Martelli, A. M. (2012a) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3, 1068-1111.   DOI
30 Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J. and Li, J. J. (2009) Coactivation of ATM/ERK/NF-${\kappa}B$ in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radic. Biol. Med. 46, 1543-1550.   DOI
31 Bases, R., Mendez, F. and Franklin, W. A. (1994) Enhanced repair endonuclease activities from radiation-arrested G2 phase mammalian cells. Int. J. Radiat. Biol. 65, 591-603.   DOI
32 McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Montalto, G., Cervello, M., Nicoletti, F., Fagone, P., Malaponte, G., Mazzarino, M. C., Candido, S., Libra, M., Basecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Cocco, L., Evangelisti, C., Chiarini, F. and Martelli, A. M. (2012b) Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 3, 954-987.   DOI