DOI QR코드

DOI QR Code

Tetrandrine Exerts a Radiosensitization Effect on Human Glioma through Inhibiting Proliferation by Attenuating ERK Phosphorylation

  • Ma, Ji-wei (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University) ;
  • Zhang, Yong (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University) ;
  • Ye, Ji-cheng (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University) ;
  • Li, Ru (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University) ;
  • Wen, Yu-Lin (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University) ;
  • Huang, Jian-xian (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University) ;
  • Zhong, Xue-yun (Division of Pathology, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Medical College, Jinan University)
  • Received : 2016.02.25
  • Accepted : 2016.07.28
  • Published : 2017.03.01

Abstract

Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to have a radiosensitization effect on tumors. However, its effects on human glioma and the specific molecular mechanisms of these effects remain unknown. In this study, we demonstrated that Tet has a radiosensitization effect on human glioma cells. It has been hypothesized that Tet has a radiosensitization effect on glioma cells by affecting the glioma cell cycle and DNA repair mechanism and that ERK mediates these activities. Therefore, we conducted detailed analyses of the effects of Tet on the cell cycle by performing flow cytometric analysis and on DNA repair by detecting the expression of phosphorylated H2AX by immunofluorescence. We used western blot analysis to investigate the role of ERK in the effect of Tet on the cell cycle and DNA repair. The results revealed that Tet exerts its radiosensitization effect on glioma cells by inhibiting proliferation and decreasing the expression of phosphorylated ERK and its downstream proteins. In summary, our data indicate that ERK is involved in Tet-induced radiosensitization of glioma cells via inhibition of glioma cell proliferation or of the cell cycle at G0/G1 phase.

Keywords

References

  1. Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J. and Li, J. J. (2009) Coactivation of ATM/ERK/NF-${\kappa}B$ in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radic. Biol. Med. 46, 1543-1550. https://doi.org/10.1016/j.freeradbiomed.2009.03.012
  2. Asati, V., Mahapatra, D. K. and Bharti, S. K. (2016) PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur. J. Med. Chem. 109, 314-341. https://doi.org/10.1016/j.ejmech.2016.01.012
  3. Bases, R., Mendez, F. and Franklin, W. A. (1994) Enhanced repair endonuclease activities from radiation-arrested G2 phase mammalian cells. Int. J. Radiat. Biol. 65, 591-603. https://doi.org/10.1080/09553009414550681
  4. Chen, X. L., Ren, K. H., He, H. W. and Shao, R. G. (2008) Involvement of PI3K/AKT/GSK3beta pathway in tetrandrine-induced G1 arrest and apoptosis. Cancer Biol. Ther. 7, 1073-1078. https://doi.org/10.4161/cbt.7.7.6142
  5. Cho, H. S., Chang, S. H., Chung, Y. S., Shin, J. Y., Park, S. J., Lee, E. S., Hwang, S. K., Kwon, J. T., Tehrani, A. M., Woo, M., Noh, M. S., Hanifah, H., Jin, H., Xu, C. X. and Cho, M. H. (2009) Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J. Vet. Sci. 10, 23-28. https://doi.org/10.4142/jvs.2009.10.1.23
  6. Dai, X. F., Ding, J., Zhang, R. G., Ren, J. H., Ma, C. M. and Wu, G. (2013) Radiosensitivity enhancement of human hepatocellular carcinoma cell line SMMC-7721 by sorafenib through the MEK/ERK signal pathway. Int. J. Radiat. Biol. 89, 724-731. https://doi.org/10.3109/09553002.2013.791405
  7. Du, W., Pang, C., Xue, Y., Zhang, Q. and Wei, X. (2015) Dihydroartemisinin inhibits the Raf/ERK/MEK and PI3K/AKT pathways in glioma cells. Oncol. Lett. 10, 3266-3270. https://doi.org/10.3892/ol.2015.3699
  8. Ferrante, A., Seow, W. K., Rowan-Kelly, B. and Thong, Y. H. (1990) Tetrandrine, a plant alkaloid, inhibits the production of tumour necrosis factor-alpha (cachectin) hy human monocytes. Clin. Exp. Immunol. 80, 232-235.
  9. Gao, J. L., Ji, X., He, T. C., Zhang, Q., He, K., Zhao, Y., Chen, S. H. and Lv, G. Y. (2013) Tetrandrine suppresses cancer angiogenesis and metastasis in 4T1 tumor bearing mice. Evid. Based Complement. Alternat. Med. 2013, 265061.
  10. Huang, Y. C., Wei, K. C., Chang, C. H., Yang, J. T., Ho, J. T., Shen, C. C., Su, C. F., Cho, D. Y., Ma, H. I., Lin, J. W., Lee, E. J., Wu, J. J., Tsai, M. D., Chang, C. K., Howng, S. L. and Chang, C. N. (2011) A retrospective survey of patients with malignant gliomas treated in the neuro-oncological care system under the Universal National Health Insurance program in Taiwan. J. Clin. Neurosci. 18, 784-788. https://doi.org/10.1016/j.jocn.2010.10.016
  11. Kuipers, G. K., Slotman, B. J., Wedekind, L. E., Stoter, T. R., Berg, J., Sminia, P. and Lafleur, M. V. (2007) Radiosensitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int. J. Radiat. Biol. 83, 677-685. https://doi.org/10.1080/09553000701558985
  12. Lee, J. H., Kang, G. H., Kim, K. C., Kim, K. M., Park, D. I., Choi, B. T., Kang, H. S., Lee, Y. T. and Choi, Y. H. (2002) Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Int. J. Oncol. 21, 1239-1244.
  13. Li, T., Song, T., Ni, L., Yang, G., Song, X., Wu, L., Liu, B. and Liu, C. (2014) The p-ERK-p-c-Jun-cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract. Biochem. Biophys. Res. Commun. 453, 316-320. https://doi.org/10.1016/j.bbrc.2014.09.062
  14. Liang, X., So, Y. H., Cui, J., Ma, K., Xu, X., Zhao, Y., Cai, L. and Li, W. (2011) The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J. Radiat. Res. 52, 380-386. https://doi.org/10.1269/jrr.10121
  15. Lin, Y., Wang, Y., Liu, X., Yan, J., Su, L. and Liu, X. (2016) A novel derivative of tetrandrine (H1) induces endoplasmic reticulum stressmediated apoptosis and prosurvival autophagy in human non-small cell lung cancer cells. Tumour Biol. 37, 10403-10413. https://doi.org/10.1007/s13277-016-4950-0
  16. Liu, W., Kou, B., Ma, Z. K., Tang, X. S., Lv, C., Ye, M., Chen, J. Q., Li, L., Wang, X. Y. and He, D. L. (2015) Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells. Asian J. Androl. 17, 850-853.
  17. Ma, J. W., Zhang, Y., Li, R., Ye, J. C., Li, H. Y., Zhang, Y. K., Ma, Z. L., Li, J. Y., Zhong, X. Y. and Yang, X. (2015) Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation. Eur. J. Pharmacol. 764, 228-239. https://doi.org/10.1016/j.ejphar.2015.06.017
  18. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Franklin, R. A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M. C., Fagone, P., Nicoletti, F., Basecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L. and Martelli, A. M. (2012a) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3, 1068-1111. https://doi.org/10.18632/oncotarget.659
  19. McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Montalto, G., Cervello, M., Nicoletti, F., Fagone, P., Malaponte, G., Mazzarino, M. C., Candido, S., Libra, M., Basecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Cocco, L., Evangelisti, C., Chiarini, F. and Martelli, A. M. (2012b) Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 3, 954-987. https://doi.org/10.18632/oncotarget.652
  20. Michalski, A., Bouffet, E., Taylor, R. E., Hargrave, D., Walker, D., Picton, S., Robinson, K., Pizer, B. and Bujkiewicz, S. (2010) The addition of high-dose tamoxifen to standard radiotherapy does not improve the survival of patients with diffuse intrinsic pontine glioma. J. Neurooncol. 100, 81-88. https://doi.org/10.1007/s11060-010-0141-9
  21. Ng, L. T., Chiang, L. C., Lin, Y. T. and Lin, C. C. (2006) Antiproliferative and apoptotic effects of tetrandrine on different human hepatoma cell lines. Am. J. Chin. Med. 34, 125-135. https://doi.org/10.1142/S0192415X06003692
  22. Ostrom, Q. T., Gittleman, H., Stetson, L., Virk, S. M. and Barnholtz-Sloan, J. S. (2015) Epidemiology of gliomas. Cancer Treat. Res. 163, 1-14.
  23. Park, H. S., You, G. E., Yang, K. H., Kim, J. Y., An, S., Song, J. Y., Lee, S. J., Lim, Y. K. and Nam, S. Y. (2015) Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur. J. Cell Biol. 94, 653-660. https://doi.org/10.1016/j.ejcb.2015.08.003
  24. Stepanenko, A. A., Andreieva, S. V., Korets, K. V., Mykytenko, D. O., Baklaushev, V. P., Chekhonin, V. P. and Dmitrenko, V. V. (2016) mTOR inhibitor temsirolimus and MEK1/2 inhibitor U0126 promote chromosomal instability and cell type-dependent phenotype changes of glioblastoma cells. Gene 579, 58-68. https://doi.org/10.1016/j.gene.2015.12.064
  25. Sun, X., Xu, R., Deng, Y., Cheng, H., Ma, J., Ji, J. and Zhou, Y. (2007a) Effects of tetrandrine on apoptosis and radiosensitivity of nasopharyngeal carcinoma cell line CNE. Acta Biochim. Biophys. Sin. (Shanghai) 39, 869-878. https://doi.org/10.1111/j.1745-7270.2007.00349.x
  26. Sun, X. C., Cheng, H. Y., Deng, Y. X., Shao, R. G. and Ma, J. (2007b) Tetrandrine: a potent abrogator of G2 checkpoint function in tumor cells and its mechanism. Biomed. Environ. Sci. 20, 495-501.
  27. Sun, Y., Liu, W. Z., Liu, T., Feng, X., Yang, N. and Zhou, H. F. (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35, 600-604. https://doi.org/10.3109/10799893.2015.1030412
  28. Wu, J. M., Chen, Y., Chen, J. C., Lin, T. Y. and Tseng, S. H. (2010) Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Lett. 287, 187-195. https://doi.org/10.1016/j.canlet.2009.06.009
  29. Wu, K., Zhou, M., Wu, Q. X., Yuan, S. X., Wang, D. X., Jin, J. L., Huang, J., Yang, J. Q., Sun, W. J., Wan, L. H. and He, B. C. (2015) The role of IGFBP-5 in mediating the anti-proliferation effect of tetrandrine in human colon cancer cells. Int. J. Oncol. 46, 1205-1213. https://doi.org/10.3892/ijo.2014.2800
  30. Xiao, W., Graham, P. H., Power, C. A., Hao, J., Kearsley, J. H. and Li, Y. (2012) CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clin. Exp. Metastasis 29, 1-9. https://doi.org/10.1007/s10585-011-9423-7
  31. Xiao, W., Jiang, Y., Men, Q., Yuan, L., Huang, Z., Liu, T., Li, W. and Liu, X. (2015) Tetrandrine induces G1/S cell cycle arrest through the ROS/Akt pathway in EOMA cells and inhibits angiogenesis in vivo. Int. J. Oncol. 46, 360-368. https://doi.org/10.3892/ijo.2014.2735
  32. Yu, J., Liu, F., Sun, M., Sun, Z. and Sun, S. (2011) Enhancement of radiosensitivity and the potential mechanism on human esophageal carcinoma cells by tetrandrine. Cancer Biother. Radiopharm. 26, 437-442. https://doi.org/10.1089/cbr.2011.0964

Cited by

  1. Receptor in Proliferation and Migration of Human Glioma Cells vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/8591397
  2. TBX2 overexpression promotes proliferation and invasion through epithelial-mesenchymal transition and ERK signaling pathway vol.17, pp.1, 2017, https://doi.org/10.3892/etm.2018.7028
  3. Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System vol.21, pp.None, 2017, https://doi.org/10.2174/1389450121666200727115454
  4. Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.00358
  5. Phytoradiotherapy: An Integrative Approach to Cancer Treatment by Combining Radiotherapy With Phytomedicines vol.10, pp.None, 2017, https://doi.org/10.3389/fonc.2020.624663
  6. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas vol.26, pp.4, 2017, https://doi.org/10.3390/molecules26041169