References
-
Ahmed, K. M., Nantajit, D., Fan, M., Murley, J. S., Grdina, D. J. and Li, J. J. (2009) Coactivation of ATM/ERK/NF-
${\kappa}B$ in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radic. Biol. Med. 46, 1543-1550. https://doi.org/10.1016/j.freeradbiomed.2009.03.012 - Asati, V., Mahapatra, D. K. and Bharti, S. K. (2016) PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur. J. Med. Chem. 109, 314-341. https://doi.org/10.1016/j.ejmech.2016.01.012
- Bases, R., Mendez, F. and Franklin, W. A. (1994) Enhanced repair endonuclease activities from radiation-arrested G2 phase mammalian cells. Int. J. Radiat. Biol. 65, 591-603. https://doi.org/10.1080/09553009414550681
- Chen, X. L., Ren, K. H., He, H. W. and Shao, R. G. (2008) Involvement of PI3K/AKT/GSK3beta pathway in tetrandrine-induced G1 arrest and apoptosis. Cancer Biol. Ther. 7, 1073-1078. https://doi.org/10.4161/cbt.7.7.6142
- Cho, H. S., Chang, S. H., Chung, Y. S., Shin, J. Y., Park, S. J., Lee, E. S., Hwang, S. K., Kwon, J. T., Tehrani, A. M., Woo, M., Noh, M. S., Hanifah, H., Jin, H., Xu, C. X. and Cho, M. H. (2009) Synergistic effect of ERK inhibition on tetrandrine-induced apoptosis in A549 human lung carcinoma cells. J. Vet. Sci. 10, 23-28. https://doi.org/10.4142/jvs.2009.10.1.23
- Dai, X. F., Ding, J., Zhang, R. G., Ren, J. H., Ma, C. M. and Wu, G. (2013) Radiosensitivity enhancement of human hepatocellular carcinoma cell line SMMC-7721 by sorafenib through the MEK/ERK signal pathway. Int. J. Radiat. Biol. 89, 724-731. https://doi.org/10.3109/09553002.2013.791405
- Du, W., Pang, C., Xue, Y., Zhang, Q. and Wei, X. (2015) Dihydroartemisinin inhibits the Raf/ERK/MEK and PI3K/AKT pathways in glioma cells. Oncol. Lett. 10, 3266-3270. https://doi.org/10.3892/ol.2015.3699
- Ferrante, A., Seow, W. K., Rowan-Kelly, B. and Thong, Y. H. (1990) Tetrandrine, a plant alkaloid, inhibits the production of tumour necrosis factor-alpha (cachectin) hy human monocytes. Clin. Exp. Immunol. 80, 232-235.
- Gao, J. L., Ji, X., He, T. C., Zhang, Q., He, K., Zhao, Y., Chen, S. H. and Lv, G. Y. (2013) Tetrandrine suppresses cancer angiogenesis and metastasis in 4T1 tumor bearing mice. Evid. Based Complement. Alternat. Med. 2013, 265061.
- Huang, Y. C., Wei, K. C., Chang, C. H., Yang, J. T., Ho, J. T., Shen, C. C., Su, C. F., Cho, D. Y., Ma, H. I., Lin, J. W., Lee, E. J., Wu, J. J., Tsai, M. D., Chang, C. K., Howng, S. L. and Chang, C. N. (2011) A retrospective survey of patients with malignant gliomas treated in the neuro-oncological care system under the Universal National Health Insurance program in Taiwan. J. Clin. Neurosci. 18, 784-788. https://doi.org/10.1016/j.jocn.2010.10.016
- Kuipers, G. K., Slotman, B. J., Wedekind, L. E., Stoter, T. R., Berg, J., Sminia, P. and Lafleur, M. V. (2007) Radiosensitization of human glioma cells by cyclooxygenase-2 (COX-2) inhibition: independent on COX-2 expression and dependent on the COX-2 inhibitor and sequence of administration. Int. J. Radiat. Biol. 83, 677-685. https://doi.org/10.1080/09553000701558985
- Lee, J. H., Kang, G. H., Kim, K. C., Kim, K. M., Park, D. I., Choi, B. T., Kang, H. S., Lee, Y. T. and Choi, Y. H. (2002) Tetrandrine-induced cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Int. J. Oncol. 21, 1239-1244.
- Li, T., Song, T., Ni, L., Yang, G., Song, X., Wu, L., Liu, B. and Liu, C. (2014) The p-ERK-p-c-Jun-cyclinD1 pathway is involved in proliferation of smooth muscle cells after exposure to cigarette smoke extract. Biochem. Biophys. Res. Commun. 453, 316-320. https://doi.org/10.1016/j.bbrc.2014.09.062
- Liang, X., So, Y. H., Cui, J., Ma, K., Xu, X., Zhao, Y., Cai, L. and Li, W. (2011) The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells. J. Radiat. Res. 52, 380-386. https://doi.org/10.1269/jrr.10121
- Lin, Y., Wang, Y., Liu, X., Yan, J., Su, L. and Liu, X. (2016) A novel derivative of tetrandrine (H1) induces endoplasmic reticulum stressmediated apoptosis and prosurvival autophagy in human non-small cell lung cancer cells. Tumour Biol. 37, 10403-10413. https://doi.org/10.1007/s13277-016-4950-0
- Liu, W., Kou, B., Ma, Z. K., Tang, X. S., Lv, C., Ye, M., Chen, J. Q., Li, L., Wang, X. Y. and He, D. L. (2015) Tetrandrine suppresses proliferation, induces apoptosis, and inhibits migration and invasion in human prostate cancer cells. Asian J. Androl. 17, 850-853.
- Ma, J. W., Zhang, Y., Li, R., Ye, J. C., Li, H. Y., Zhang, Y. K., Ma, Z. L., Li, J. Y., Zhong, X. Y. and Yang, X. (2015) Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation. Eur. J. Pharmacol. 764, 228-239. https://doi.org/10.1016/j.ejphar.2015.06.017
- McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Franklin, R. A., Montalto, G., Cervello, M., Libra, M., Candido, S., Malaponte, G., Mazzarino, M. C., Fagone, P., Nicoletti, F., Basecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Chiarini, F., Evangelisti, C., Cocco, L. and Martelli, A. M. (2012a) Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 3, 1068-1111. https://doi.org/10.18632/oncotarget.659
- McCubrey, J. A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Montalto, G., Cervello, M., Nicoletti, F., Fagone, P., Malaponte, G., Mazzarino, M. C., Candido, S., Libra, M., Basecke, J., Mijatovic, S., Maksimovic-Ivanic, D., Milella, M., Tafuri, A., Cocco, L., Evangelisti, C., Chiarini, F. and Martelli, A. M. (2012b) Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget 3, 954-987. https://doi.org/10.18632/oncotarget.652
- Michalski, A., Bouffet, E., Taylor, R. E., Hargrave, D., Walker, D., Picton, S., Robinson, K., Pizer, B. and Bujkiewicz, S. (2010) The addition of high-dose tamoxifen to standard radiotherapy does not improve the survival of patients with diffuse intrinsic pontine glioma. J. Neurooncol. 100, 81-88. https://doi.org/10.1007/s11060-010-0141-9
- Ng, L. T., Chiang, L. C., Lin, Y. T. and Lin, C. C. (2006) Antiproliferative and apoptotic effects of tetrandrine on different human hepatoma cell lines. Am. J. Chin. Med. 34, 125-135. https://doi.org/10.1142/S0192415X06003692
- Ostrom, Q. T., Gittleman, H., Stetson, L., Virk, S. M. and Barnholtz-Sloan, J. S. (2015) Epidemiology of gliomas. Cancer Treat. Res. 163, 1-14.
- Park, H. S., You, G. E., Yang, K. H., Kim, J. Y., An, S., Song, J. Y., Lee, S. J., Lim, Y. K. and Nam, S. Y. (2015) Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur. J. Cell Biol. 94, 653-660. https://doi.org/10.1016/j.ejcb.2015.08.003
- Stepanenko, A. A., Andreieva, S. V., Korets, K. V., Mykytenko, D. O., Baklaushev, V. P., Chekhonin, V. P. and Dmitrenko, V. V. (2016) mTOR inhibitor temsirolimus and MEK1/2 inhibitor U0126 promote chromosomal instability and cell type-dependent phenotype changes of glioblastoma cells. Gene 579, 58-68. https://doi.org/10.1016/j.gene.2015.12.064
- Sun, X., Xu, R., Deng, Y., Cheng, H., Ma, J., Ji, J. and Zhou, Y. (2007a) Effects of tetrandrine on apoptosis and radiosensitivity of nasopharyngeal carcinoma cell line CNE. Acta Biochim. Biophys. Sin. (Shanghai) 39, 869-878. https://doi.org/10.1111/j.1745-7270.2007.00349.x
- Sun, X. C., Cheng, H. Y., Deng, Y. X., Shao, R. G. and Ma, J. (2007b) Tetrandrine: a potent abrogator of G2 checkpoint function in tumor cells and its mechanism. Biomed. Environ. Sci. 20, 495-501.
- Sun, Y., Liu, W. Z., Liu, T., Feng, X., Yang, N. and Zhou, H. F. (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. Res. 35, 600-604. https://doi.org/10.3109/10799893.2015.1030412
- Wu, J. M., Chen, Y., Chen, J. C., Lin, T. Y. and Tseng, S. H. (2010) Tetrandrine induces apoptosis and growth suppression of colon cancer cells in mice. Cancer Lett. 287, 187-195. https://doi.org/10.1016/j.canlet.2009.06.009
- Wu, K., Zhou, M., Wu, Q. X., Yuan, S. X., Wang, D. X., Jin, J. L., Huang, J., Yang, J. Q., Sun, W. J., Wan, L. H. and He, B. C. (2015) The role of IGFBP-5 in mediating the anti-proliferation effect of tetrandrine in human colon cancer cells. Int. J. Oncol. 46, 1205-1213. https://doi.org/10.3892/ijo.2014.2800
- Xiao, W., Graham, P. H., Power, C. A., Hao, J., Kearsley, J. H. and Li, Y. (2012) CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clin. Exp. Metastasis 29, 1-9. https://doi.org/10.1007/s10585-011-9423-7
- Xiao, W., Jiang, Y., Men, Q., Yuan, L., Huang, Z., Liu, T., Li, W. and Liu, X. (2015) Tetrandrine induces G1/S cell cycle arrest through the ROS/Akt pathway in EOMA cells and inhibits angiogenesis in vivo. Int. J. Oncol. 46, 360-368. https://doi.org/10.3892/ijo.2014.2735
- Yu, J., Liu, F., Sun, M., Sun, Z. and Sun, S. (2011) Enhancement of radiosensitivity and the potential mechanism on human esophageal carcinoma cells by tetrandrine. Cancer Biother. Radiopharm. 26, 437-442. https://doi.org/10.1089/cbr.2011.0964
Cited by
- Receptor in Proliferation and Migration of Human Glioma Cells vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/8591397
- TBX2 overexpression promotes proliferation and invasion through epithelial-mesenchymal transition and ERK signaling pathway vol.17, pp.1, 2017, https://doi.org/10.3892/etm.2018.7028
- Management of Glioblastoma Multiforme by Phytochemicals: Applications of Nanoparticle-Based Targeted Drug Delivery System vol.21, pp.None, 2017, https://doi.org/10.2174/1389450121666200727115454
- Molecular Targets for Combined Therapeutic Strategies to Limit Glioblastoma Cell Migration and Invasion vol.11, pp.None, 2017, https://doi.org/10.3389/fphar.2020.00358
- Phytoradiotherapy: An Integrative Approach to Cancer Treatment by Combining Radiotherapy With Phytomedicines vol.10, pp.None, 2017, https://doi.org/10.3389/fonc.2020.624663
- Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas vol.26, pp.4, 2017, https://doi.org/10.3390/molecules26041169