• Title/Summary/Keyword: ginseng-field soil

Search Result 182, Processing Time 0.027 seconds

Isolation and Tyrosinase Inhibitory Activity of Wild Yeasts Obtained from Soil in the Fields of Medicinal Plants, Ginseng and Korean Angelica (인삼과 당귀 재배 토양으로부터 야생효모들의 분리 및 미백성 Tyrosinase 저해활성)

  • Kim, Ji-Yoon;Han, Sang-Min;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.46 no.3
    • /
    • pp.315-323
    • /
    • 2018
  • The goal of this study was to isolate wild yeasts from the fields of medicinal plants and investigate its tyrosinase inhibitory activities. Wild yeasts isolated from soil in the ginseng and Korean angelica fields of Geumsan, Chungcheongnam-do, Korea were identified by comparing the nucleotide sequences of the D1/D2 domain of 26S rDNA. In total, 43 yeast strains belonging to 21 species were isolated from 50 soil samples obtained from two medicinal plant fields. From the ginseng field, six strains of Rhodotorula glutinis and four strains of Sampaiozyma ingeniosa were isolated, out of which Rhodotorula glutinis strains were dominant. In the Korean angelica field, six strains of Cyberlindnera saturnus, three strains of Piskurozyma taiwanensis, and three strains of Saitozyma podzolica were isolated, out of which Cyberlindnera saturnus strains were dominant. We prepared cell-free extracts of the isolated wild yeasts and their tyrosinase inhibitory activities were investigated. Among 43 yeast strains, cell-free extracts of Naganishia globosa G1-7 showed the highest tyrosinase inhibitory activity (28.0%).

Conversion of Ginsenoside $Rb_1$ by Ginseng Soil Bacterium Cellulosimicrobium sp. Gsoil 235 According to Various Culture Broths (인삼 토양 미생물 Cellulosimicrobium sp. Gsoil 235의 배지조성에 따른 Ginsenoside $Rb_1$ 전환)

  • Na, Ju-Ryun;Kim, Yu-Jin;Kim, Se-Hwa;Kim, Ho-Bin;Shim, Ju-Sun;Kim, Se-Young;Yang, Deok-Chun
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Ginseng saponins (a secondary metabolite, termed ginsenosides) are the principal bioactive ingredients of ginseng, and modification of the sugar chains may markedly change the its biological activity. One of soil bacteria having $\beta$-glucosidase (to transform ginsenoside $Rb_1$) activity was isolated from soil of a ginseng field in Daejeon. 16S rRNA gene sequence analysis revealed that the isolate belonged to the genus Cellulosimicrobium, with highest sequence similarity (99.7%) to Cellulosimicrobium funkei ATCC BAA-$886^T$. The strain, Gsoil 235, could transform ginsenoside $Rb_1$ into Rd, $Rg_3$ and 3 of un-known ginsenosides by the analyses of TLC, HPLC. By investigating its deglycosylation progress, the optimal broth for, $\beta$-glucosidase was nutrient broth (In 48 hours, almost ginsenoside $Rb_1$ could be transformed into minor ginsenosides). On the contrary, the optimal broth for growth was determined as trypic soy broth (TSB).

Direct Detection of Cylindrocarpon destructans, Root Rot Pathogen of Ginseng by Nested PCR from Soil Samples

  • Jang, Chang-Soon;Lim, Jin-Ha;Seo, Mun-Won;Song, Jeong-Young;Kim, Hong-Gi
    • Mycobiology
    • /
    • v.38 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • We have successfully applied the nested PCR to detect Cylindrocarpon destructans, a major pathogen causing root rot disease from ginseng seedlings in our former study. The PCR assay, in this study, was used to detect the pathogen from soils. The nested PCR using internal transcribed spacer (ITS) 1, 4 primer set and Dest 1, 4 primer set maintained the specificity in soils containing various microorganisms. For a soil DNA extraction method targeting chlamydospores, when several cell wall disrupting methods were tested, the combination of lyophilization and grinding with glass beads, which broke almost all the chlamydospores, was the strongest. The DNA extraction method which was completed based on the above was simple and time-saving because of exclusion of unnecessary stages, and efficient to apply in soils. As three ginseng fields whose histories were known were analyzed, the PCR assay resulted as our expectation derived from the field information. The direct PCR method will be utilized as a reliable and rapid tool for detecting and monitoring C. destructans in ginseng fields.

Yields of Ginseng Seedlings and Cultivation Methods in Ban-Yang-Jik (Semimodified Soil) Nursery (산지 반양직묘포에서 육묘방법 및 - 묘삼 생산실태)

  • 이종출;안대진;변정수
    • Journal of Ginseng Research
    • /
    • v.12 no.1
    • /
    • pp.68-75
    • /
    • 1988
  • Yields of ginseng seedlings and cultivation methods were investigated in 29 Ban-Yang-Jik (semimodified soil) nurseries to obtain some information about the production of ginseng seedling. The average number of available seedlings (useful for transplanting in the main field) per Kan ($180{\times}90$ cm) was 362. The percentage of available seedlings to the total seedlings harvested (rate of available seedlings) was 45 %. Although there were severe variations in the numbers and rates of available seedlings among the nurseries surveyed, the number of available seedlings were reduced due to both the short weighted and poor shaped (obese shape with poor root development) seedlings. The number of poor shaped seedlings was negatively correlated with height of seed-bed and frequencies of irrigation. Quadratic relations were noticed between rate of available seedling and heights of front post and rear post of shade. On the other hand, negative correlation was recognized between rate of available seedling and breadth of shade, but positive correlation was noted between rate of available seedling and frequencies of irrigation.

  • PDF

Effects of Various Bed Soil Substrates on the Growth and Yield of 2-Year-Old Ginseng Grown in the Closed Plastic House (폐쇄형 하우스를 이용한 인삼 재배에서 상토의 조성이 2년 근 인삼의 생육 및 수량에 미치는 영향)

  • Choi, Jae-Eul;Lee, Nu-Ri;Jo, Seo-Ri;Kim, Jung-Sun;Choi, Yeong-Kyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.4
    • /
    • pp.217-221
    • /
    • 2012
  • This research was conducted to investigate the influence of various organic substrates on growth and yield of ginseng seedling grown organically in the closed plastic house. The pH and EC of substrates used for organically ginseng cultivation ranged 5.93~6.78 and 0.03~0.15 dS/m respectively. The concentrations $NH_4$-N and $NO_3$-N respectively was 14.01~68.63 mg/L, 5.60~58.83 mg/L. The average quantum of the closed plastic house was range from 10 to 16% of natural light. In July and August, the maximum temperature of the closed plastic house did not exceed 30 and the average temperature was maintained within 25 lower than the field because air conditioning ran. The PPV-1 and PPV-2 bed soil substrates produced higher stem length, stem diameter, shoot fresh weight and leaf area than those of conventional culture. In PPV-2 bed soil substrates, root fresh weight and root diameter was the highest. The root fresh weight of PPV-2 bed soil substrates in closed plastic house was maximum 25% heavier than the conventional cultivation. The results of this experiment will be utilized for making new substrate application for organic ginseng culture in the plastic house.

Sphingopyxis panaciterrae sp. nov., Isolated from Soil of Ginseng Field

  • Lee, Hae-Won;Ten, Irina L.;Jung, Hae-Min;Liu, Qing-Mei;Im, Wan-Taek;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1011-1015
    • /
    • 2008
  • A Gram-negative, strictly aerobic, motile bacterial strain, designated Gsoil $124^T$, was isolated from a soil sample taken from a ginseng field in Pocheon Province (South Korea). The isolate contained Q-10 as the predominant lipoquinone, plus $C_{18:1}\;{\omega}7c$ and summed feature 4 ($C_{16:1}\;{\omega}6c$ and/or iso-$C_{15:0}$ 2-OH) as the major fatty acids. The G+C content of the genomic DNA was 68.1 mol%, and the major polar lipids consisted of sphingoglycolipid, phosphatidylglycerol, phosphatidylcholine, and phosphatidylethanolamine. A comparative 16S rRNA gene sequence analysis showed that strain Gsoil $124^T$ was most closely related to Sphingopyxis chilensis (98.7%), Sphingopyxis alaskensis (98.2%), Sphingopyxis witflariensis (98.2%), Sphingopyxis taejonensis (98.0%), and Sphingopyxis macrogoltabida (97.6%). However, the DNA-DNA relatedness between strain Gsoil $124^T$ and its phylogenetically closest neighbors was less than 22%. Thus, on the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $124^T$ should be classified as representing a novel species in the genus Sphingopyxis, for which the name Sphingopyxis panaciterrae sp. nov. is proposed. The type strain is Gsoil $124^T$ (=KCTC $12580^T$=LMG $24003^T$).

Effect of Seeding Rate on Growth and Yield of Ginseng Plant in Direct-Sowing Culture (인삼 직파재배에서 파종밀도가 생육 및 수량에 미치는 영향)

  • 이종철;안대진
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.299-303
    • /
    • 1998
  • To know possibility of raw ginseng production for white- and red-ginseng by direct-sowing culture, seeds were directly sowed or seedlings were transplanted at soil condition of sandy loam in ginseng field. After cultivation, the characters of 5-year-old ginseng were investigated. Number of survived plants was increased with increase the seeding quantity in direct-sowing culture, the survived plants in direct-sowing culture was higher than that of transplanting one. Rate of the numbers of survived plants to numbers of seeds sowed in plots of 134 or 90 seeds sowed per tan, 180 x 90cm area, inspire of high number of survived plant was high compared to that of transplanting culture. Occurrence rate of rusty root of ginseng in direct-sowing culture was low significantly compared to that of transplanting culture. Root yield showed in the order of 134, 268, 90 seeds sowed, the values of yield in direct-sowing culture were high obviously compared to that of transplanting one. Individual root weight was increased with decrease the seeding quantity, however, the root weight in plot of 90 seeds sowed showed almost equal the weight in transplanting culture. The number of usable raw ginseng for white- and red-ginseng was increased with decrease of the seeding quantity; the numbers were higher than that of transplanting culture remarkably. We concluded that optimum seedling rate in direct-sowing culture of ginseng was 90 to 134 seeds per tan considering the yield per area and production rate of large root.

  • PDF

금산 토양내에 생육되는 인삼의 전이원소 함량

  • Song Seok-Hwan;Yu Seon-Gyun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.17-19
    • /
    • 2005
  • This study is for geochemical relationships between ginseng and soil from three representative soil types from Keumsan, shale, phyllite and granite. In the weathered soils(avg.), shale area is high in the most of element, but low in the granite area. In the field soils(avg.), the shale area is mainly high, but low in the granite area and comparing with ages, most of elements are high in the 2 year soils, but low in the 4 year soils. In the host rocks(avg.), high average element contents are shown in the phyllite and shale areas. In the ginsengs, differences of the element contents with ages are not clear, but show high element contents in the 2 year ginsengs of the shale and phyllite areas, and low contents in the 4 year ginsengs of the granite area. In the relative ratios(weathered soil/field soil), most of elements from the shale area are high, above 1, suggesting high element contents in the weathered soils of the shale area relative to the granite and phyllite areas. In the relative ratios(weathered soil/host rock), most of elements Ewe above 1, suggesting the high element contents in the weathered soils relative to the host rocks. Relative ratios (soil/ginseng) of the element contents are generally several times to ten times. Among the ginsengs of different ages with the same area, the relative ratios are small in the Cu and Zn contents. Regardless of the areas, big differences of the relative ratios are found in the Co and small differences are in the Cu and Zn, which suggest that differences between soils and ginsengs are big in the Co contents and small in the Cu and Zn contents. Regardless of the ages, differences among relative ratios are small in granite area relative to the shale. area, which suggest more similarity of the granite soils with ginsengsrelativetotheshalearea.

  • PDF

Effect of Soil Moisture Content on Photosynthesis and Root Yield of Panax ginseng C. A. Meyer Seedling (토양수분함량이 묘삼의 광합성 및 근 수량에 미치는 영향)

  • Lee, Sung-Woo;Hyun, Dong-Yun;Park, Chun-Geun;Kim, Tae-Soo;Yeon, Byeong-Yeol;Kim, Chung-Guk;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.6
    • /
    • pp.367-370
    • /
    • 2007
  • To make the soil moisture proper is the important factor in the seedbed cultivation of Yangjik for producing a good quality of ginseng seedling. This study was carries out to investigate the effect of soil moisture on photosynthesis and yield of ginseng seedling under the different condition of the soil moisture, such as $100{\sim}400$ mbar. Photosynthesis rate was decreased gradually by the reduction of soil moisture, and in particular it was decreased distinctly under the lower condition of soil moisture, such as $300{\sim}400$ mbar. Photosynthesis rate in air temperature of $30^{\circ}C$ was decreased more distinct than that of $25^{\circ}C$, Light saturation point of leaves was at the quantum of $600{\mu}mol/m^3/s$ at $25^{\circ}C$ while it was decreased by $300{\mu}mol/m^3/s$ at $30^{\circ}C$ according to the increase of air temperature. Respiration rate was increased by the increase of quantum, and decreased by the reduction of soil moisture. Respiration rate under the condition of high quantum was increased regardless of air temperature, but it was decreased distinctly under the condition of low soil moisture and high air temperature, such as 400 mbar at $30^{\circ}C$. There were a gradual decrease by the reduction of soil moisture in leaf length, leaf width, chlorophyll content, and water content of leaves, but heat injury ratio was increased distinctly by the reduction of it. Total root weight, root weight per plant, the yield of usable seedling were decreased by the reduction of soil moisture, and optimal content of soil moisture to produce a good quality of seedling was 63% of field capacity or 18.9% in absolute soil moisture content.

Lysobacter ginsengisoli sp. nov., a Novel Species Isolated from Soil in Pocheon Province, South Korea

  • Jung, Hae-Min;Ten, Leonid N.;Im, Wan-Taek;Yoo, Soon-Ae;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1496-1499
    • /
    • 2008
  • A Gram-negative, aerobic, rod-shaped, nonspore-forming bacterial strain, designated Gsoil $357^T$ was isolated from soil sample of a ginseng field in Pocheon Province (South Korea). The isolate contained Q-8 as the predominant ubiquinone and iso-$C_{16:0}$, iso-$C_{17:1}$ ${\omega}9c$, and iso-$C_{15:0}$ as the major fatty acids. The G+C content of the genomic DNA was 69.3 mol%. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Gsoil $357^T$ was most closely related to Lysobacter gummosus (97.6%) and Lysobacter antibioticus (97.6%). However, the DNA-DNA relatedness value between strain Gsoil $357^T$ and its phylogenetically closest neighbors was less than 17%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 357T should be classified as representing a novel species in the genus Lysobacter, for which the name Lysobacter ginsengisoli sp. novo is proposed. The type strain is Gsoil $357^T$ (=KCTC $12602^T$=DSM $18420^T$).