• Title/Summary/Keyword: ginseng disease

Search Result 540, Processing Time 0.028 seconds

Compound K ameliorates airway inflammation and mucus secretion through the regulation of PKC signaling in vitro and in vivo

  • Lee, Jae-Won;Kim, Mun-Ock;Song, Yu Na;Min, Jae-Hong;Kim, Seong-Man;Kang, Myung-Ji;Oh, Eun Sol;Lee, Ro Woon;Jung, Sunin;Ro, Hyunju;Lee, Jae Kyoung;Ryu, Hyung Won;Lee, Dae Young;Lee, Su Ui
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.496-504
    • /
    • 2022
  • Background: Cigarette smoke (CS) is considered a principal cause of chronic obstructive pulmonary disease (COPD) and is associated with mucus hypersecretion and airway inflammation. Ginsenoside compound K (CK), a product of ginsenoside metabolism, has various biological activities. Studies on the effects of CK for the treatment of COPD and mucus hypersecretion, including the underlying signaling mechanism, have not yet been conducted. Methods: To study the protective effects and molecular mechanism of CK, phorbol 12-myristate 13-acetate (PMA)-induced human airway epithelial (NCI-H292) cells were used as a cellular model of airway inflammation. An experimental mouse COPD model was also established via CS inhalation and intranasal administration of lipopolysaccharide. Mucin 5AC (MUC5AC), monocyte chemoattractant protein-1, tumor necrosis factor-α (TNF-α), and interleukin-6 secretion, as well as elastase activity and reactive oxygen species production, were determined through enzyme-linked immunosorbent assay. Inflammatory cell influx and mucus secretion in mouse lung tissues were estimated using hematoxylin and eosin and periodic acid-schiff staining, respectively. PKCδ and its downstream signaling molecules were analyzed via western blotting. Results: CK prevented the secretion of MUC5AC and TNF-α in PMA-stimulated NCI-H292 cells and exhibited a protective effect in COPD mice via the suppression of inflammatory mediators and mucus secretion. These effects were accompanied by an inactivation of PKCδ and related signaling in vitro and in vivo. Conclusion: CK suppressed pulmonary inflammation and mucus secretion in COPD mouse model through PKC regulation, highlighting the compound's potential as a useful adjuvant in the prevention and treatment of COPD.

P-hydroxybenzoic acid positively affect the Fusarium oxysporum to stimulate root rot in Panax notoginseng

  • Jing Zhao;Zhandi Wang;Rong Jiao;Qionglian Wan;Lianchun Wang;Liangxing Li;Yali Yang;Shahzad Munir
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.229-235
    • /
    • 2024
  • Background: Plant health is directly related to the change in native microbial diversity and changes in soil health have been implicated as one of the main cause of root rot. However, scarce information is present regarding allelopathic relationship of Panax notoginseng root exudates and pathogenic fungi Fusarium oxysporum in a continuous cropping system. Methods: We analyzed P. notoginseng root exudate in the planting soil for three successive years to determine phenolic acid concentration using GC-MS and HPLC followed by effect on the microbial community assembly. Antioxidant enzymes were checked in the roots to confirm possible resistance in P. notoginseng. Results: Total 29 allelochemicals in the planting soil extract was found with highest concentration (10.54 %) of p-hydroxybenzoic acid. The HPLC showing a year-by-year decrease in p-hydroxybenzoic acid content in soil of different planting years, and an increase in population of F. oxysporum. Moreover, community analysis displayed negative correlation with 2.22 mmol. L-1 of p-hydroxybenzoic acid correspond to an 18.1 % population of F. oxysporum. Furthermore, in vitro plate assay indicates that medium dose of p-hydroxybenzoic acid (2.5-5 mmol. L-1) can stimulate the growth of F. oxysporum colonies and the production of macroconidia, as well as cell wall-degrading enzymes. We found that 2-3 mmol. L-1 of p-hydroxybenzoic acid significantly increased the population of F. oxysporum. Conclusion: In conclusion, our study suggested that p-hydroxybenzoic acid have negative effect on the root system and modified the rhizosphere microbiome so that the host plant became more susceptible to root rot disease.

Ginsenoside Rg5, a potent agonist of Nrf2, inhibits HSV-1 infection-induced neuroinflammation by inhibiting oxidative stress and NF-κB activation

  • Buyun Kim;Young Soo Kim;Wei Li;Eun-Bin Kwon;Hwan-Suck Chung;Younghoon Go;Jang-Gi Choi
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.384-394
    • /
    • 2024
  • Background: Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results: Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion: These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.

Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway

  • Chenyang Ran;Meili Lu;Fang Zhao;Yi Hao;Xinyu Guo;Yunhan Li;Yuhong Su;Hongxin Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.4
    • /
    • pp.405-416
    • /
    • 2024
  • Background: Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods: C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results: At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion: Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.

Enhanced immunity effect of Korean Red Ginseng capsule: A randomized, double-blind and placebo-controlled clinical trial

  • Yi Yang;Jing Li;Shengyuan Zhou;Daoyan Ni;Cailing Yang;Xu Zhang;Jian Tan;Jingrui Yan;Na Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.504-510
    • /
    • 2024
  • Background: As a physiological function of body, immunity can maintain health by identifying itself and excluding others. With economic development and increasingly fierce social competition, the number of sub-healthy population is gradually increasing, and the most basic problem exposed is human hypoimmunity. Hypoimmunity can be manifested as often feeling tired, catching colds, mental depression, etc. In order to enhance immunity, eating healthy foods with the effect of enhancing immunity may become an effective choice. KRG has pharmacological effects of enhancing immunity. Because the screening and evaluation method of immune population are not unified, there are relatively few KRG immunity tests for sub-health population. It is of great significance to study the effect of KRG on people with hypoimmunity to improve sub-health status. Methods: This was a 180-day, randomized, double-blind, placebo-controlled clinical trial. According to the trial scheme design, 119 qualified subjects were included and randomly divided into the test group taking KRG and the placebo control group. Subjects need to check safety indicators (blood pressure and heart rate, blood routine, liver and kidney function, urine routine and stool routine) and efficacy indicators (main and secondary) inspection at baseline, efficacy indicators inspection during the mid-term of the test (90th days of administration), safety and efficacy indicators inspection after the test (180th days of administration). Results: After the test, the safety indicators of placebo control group and KRG test group were basically within the normal range, and there is no significant difference in fireness score between the two groups. Through follow-up interviews, it was found that the subjects in the test group and the control group had no adverse reactions and allergic reactions such as nausea, flatulence, diarrhea, and abdominal pain during the test period. Self-comparison of the test group, the results of the main efficacy indicators: (1) immune related health scores were significantly improved in the mid-term and after the test (P < 0.01), (2) CD3 and CD4/CD8 increased significantly after the test (P < 0.05), (3) IgG, IgA, IgM and WBC increased significantly in the mid-term and after the test (P < 0.01); the results of the secondary efficacy indicators: (1) TNF-α decreased significantly in the midterm (P < 0.05), IFN-γ decreased significantly in the mid-term (P < 0.01), (2) NK increased significantly in the mid-term and after the test (P < 0.05), (3) monocyte increased significantly in the mid-term and after the test (P < 0.01). Inter-group comparison of the test group and the control group, the results of the main efficacy indicators: (1) immune related health scores were higher than that of the control group in the mid-term and after the test (P < 0.01), (2) IgA of the test group was higher than that of the control group in the mid-term and after the test (P < 0.05); the results of the secondary efficacy indicators: (1) WBC of the test group was higher than that of the control group in the mid-term (P < 0.05); (2) monocytes of the test group were higher than that of the control group in the mid-term and after the test (P < 0.05), neutrophils of the test group were higher than that of the control group in the mid-term (P < 0.05). Conclusion: Taking KRG has no adverse effects on the health of the subjects. According to the standard of clinical trial scheme, the immune related health scores and IgA in the main efficacy indicators were positive, which shows that KRG is helpful in enhancing human immunity.

Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer's Disease

  • Kim, Hyeon-Joong;Shin, Eun-Joo;Lee, Byung-Hwan;Choi, Sun-Hye;Jung, Seok-Won;Cho, Ik-Hyun;Hwang, Sung-Hee;Kim, Joon Yong;Han, Jung-Soo;Chung, ChiHye;Jang, Choon-Gon;Rhim, Hyewon;Kim, Hyoung-Chun;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.796-805
    • /
    • 2015
  • Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer's disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced $[Ca^{2+}]_i $ transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated $[Ca^{2+}]_i $ transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 1 2 weeks) also significantly attenuated amyloid-${\beta}$ protein ($A{\beta}$)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to $A{\beta}$ and could be utilized for AD prevention or therapy.

Standardization of Quality and Inhibitory Effect of Alzheimer in $A{\beta}$ Oligomer-induced H19-7 Cells by LMK02 (LMK02의 품질규격화와 $A{\beta}$ 올리고머에 의해 유도된 희주해마 H19-7세포주에 미치는 항치매효과)

  • Kang, Hyung-Won;Kim, Sang-Tae;Son, Hyeong-Jin;Han, Pyeong-Leem;Cho, Hyoung-Kwon;Lee, Young-Jae;Lyu, Yeoung-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.397-404
    • /
    • 2009
  • For standardization of LMK02 quality, Ginsenoside Rg3 of Red Ginseng and Decursin of Angelica gigas Nakai in the constituents of LMK02 were estimated as indicative components. From LMK02 water extract, has been used in vitro test for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with APP-related dementias and Alzheimer's disease (AD). $A{\beta}$ oligomer derived from proteolytic processing of the ${\beta}$-amyloid precursor protein (APP), including the amyloid-${\beta}$ peptide ($A{\beta}$), play a critical role in the pathogenesis of Alzheimer's dementia. We determined that oligomer amyloid-${\beta}$ ($A{\beta}$) have a profound attenuation in the increase in rat hippocampus H19-7 cells from. Experimental evidence indicates that LMK02 protects against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. Using a hippocampus cell line on $A{\beta}$ oligomer-induced neuronal cytotoxicity, we demonstrated that LMK02 inhibits formation of $A{\beta}$ oligomer, which are the behavior, and possibly causative, feature of AD. In the Red Ginseng, the average amounts of Ginsenoside Rg3 were $47.04{\mu}g/g$ and $42.3{\mu}g/g$, 90 % of its weight were set as a standard value. And, in the Angelica gigas Nakai, the average amounts of Decursin were 2.71 mg/g and 2.44mg/g, 90 % of its weight were also set as a standard value. The attenuated $A{\beta}$ oligomer in the presence of LMK02 was observed in the conditioned medium of this $A{\beta}$ oligomer-induced cells under in vitro. In the cells, LMK02 significantly activated antiapoptosis and decreased the production of ROS. These results suggest that neuronal damage in AD might be due to two factors: a direct $A{\beta}$ oligomer toxicity and multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer, underlie the neuroprotective effects of LMK02 treatment.

Recent Studies on Natural Products that Improve Myogenesis (Myogenesis 촉진에 관여하는 최근 천연물의 동향)

  • Chae, Jongbeom;Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.202-210
    • /
    • 2020
  • As the elderly population increases, it is becoming important to prevent and treat muscle loss caused by aging or disease. Steroidal androgen in the protein assimilation steroid (AAS) system is mainly used to induce muscle improvement, but it is well known that long-term or excessive doses of AAS result in various side effects, although they are prescribed for various muscle and weight loss treatments. Research is therefore underway to explore natural substances that promote muscle renewal with relatively few side effects. However, despite many studies on the improvement of skeletal muscle and the reduction of muscle disease using natural products, there is still a lack of significant clinical results and mechanism studies. The promotion of muscle regeneration through treatment with natural substances typically involves three mechanisms: positive control of the muscle modulating factor (MRF), activation of the protein synthesis mechanism, and inhibition of the protein breakdown mechanism. A study of plant extracts that are known to have muscle neoplasmic stimulation effects, such as black ginseng, plum, and nutmeg, as well as single substances derived from natural products, such as creatine, catechin, and several fatty acids, is therefore described. We also summarize the mechanisms that have been identified so far through which each of these extracts or single materials facilitates muscle regeneration and the signaling pathways that they mediate.

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

  • Ryuni Kim;Jee Won Kim;Hyerim Choi;Ji-Eun Oh;Tae Hyun Kim;Ga-Yeon Go;Sang-Jin Lee;Gyu-Un Bae
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.726-734
    • /
    • 2023
  • Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods: To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results: Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion: This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.