DOI QR코드

DOI QR Code

Ginsenoside Rg5 promotes muscle regeneration via p38MAPK and Akt/mTOR signaling

  • Ryuni Kim (Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University) ;
  • Jee Won Kim (Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University) ;
  • Hyerim Choi (Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University) ;
  • Ji-Eun Oh (Department of Biomedical Laboratory Science, Far East University) ;
  • Tae Hyun Kim (Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University) ;
  • Ga-Yeon Go (Research Institute of Aging Related Disease, AniMusCure Inc.) ;
  • Sang-Jin Lee (Research Institute of Aging Related Disease, AniMusCure Inc.) ;
  • Gyu-Un Bae (Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University)
  • Received : 2022.10.26
  • Accepted : 2023.06.12
  • Published : 2023.11.01

Abstract

Background: Skeletal muscles play a key role in physical activity and energy metabolism. The loss of skeletal muscle mass can cause problems related to metabolism and physical activity. Studies are being conducted to prevent such diseases by increasing the mass and regeneration capacity of muscles. Ginsenoside Rg5 has been reported to exhibit a broad range of pharmacological activities. However, studies on the effects of Rg5 on muscle differentiation and growth are scarce. Methods: To investigate the effects of Rg5 on myogenesis, C2C12 myoblasts were induced to differentiate with Rg5, followed by immunoblotting, immunostaining, and qRT-PCR for myogenic markers and promyogenic signaling (p38MAPK). Immunoprecipitation confirmed that Rg5 increased the interaction between MyoD and E2A via p38MAPK. To investigate the effects of Rg5 on prevention of muscle mass loss, C2C12 myotubes were treated with dexamethasone to induce muscle atrophy. Immunoblotting, immunostaining, and qRT-PCR were performed for myogenic markers, Akt/mTOR signaling for protein synthesis, and atrophy-related genes (Atrogin-1 and MuRF1). Results: Rg5 promoted C2C12 myoblast differentiation through phosphorylation of p38MAPK and MyoD/E2A heterodimerization. Furthermore, Rg5 stimulated C2C12 myotube hypertrophy via phosphorylation of Akt/mTOR. Phosphorylation of Akt induces FoxO3a phosphorylation, which reduces the expression of Atrogin-1 and MuRF1. Conclusion: This study provides an understanding of how Rg5 promotes myogenesis and hypertrophy and prevents dexamethasone-induced muscle atrophy. The study is the first, to the best of our knowledge, to show that Rg5 promotes muscle regeneration and to suggest that Rg5 can be used for therapeutic intervention of muscle weakness and atrophy, including cancer cachexia.

Keywords

Acknowledgement

The present study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; grant no. NRF-2021-COMPA-0101, NRF-2020-R1A2C1007555, NRF-2022-R1A5A2021216).

References

  1. Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, Wong C, Levinger P, Asrar Ul Haq M, Hare DL, et al. Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 2016;22:94-109.
  2. Wang M, Tan Y, Shi Y, Wang X, Liao Z, Wei P. Diabetes and sarcopenic obesity: pathogenesis, diagnosis, and treatments. Front Endocrinol 2020;11:568.
  3. Domingues-Faria C, Vasson M-P, Goncalves-Mendes N, Boirie Y, Walrand S. Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev 2016;26:22-36. https://doi.org/10.1016/j.arr.2015.12.004
  4. Jagoe RT, Goldberg AL. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Opin Clin Nutr Metab Care 2001;4(3):183e90.
  5. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 2019;99(1):427-511. https://doi.org/10.1152/physrev.00061.2017
  6. McKenna CF, Fry CS. Altered satellite cell dynamics accompany skeletal muscle atrophy during chronic illness, disuse, and aging. Curr Opin Clin Nutr Metab Care 2017;20(6):447-52. https://doi.org/10.1097/MCO.0000000000000409
  7. Das M, Wilson K, Molnar P, Hickman JJ. Differentiation of skeletal muscle and integration of myotubes with silicon microstructures using serum-free medium and a synthetic silane substrate. Nat Protoc 2007;2(7):1795-801. https://doi.org/10.1038/nprot.2007.229
  8. Molkentin JD, Olson EN. Defining the regulatory networks for muscle development. Curr Opin Genet Dev 1996;6(4):445-53. https://doi.org/10.1016/S0959-437X(96)80066-9
  9. Wardle FC. Master control: transcriptional regulation of mammalian Myod. J Muscle Res Cell Motil 2019;40(2):211-26. https://doi.org/10.1007/s10974-019-09538-6
  10. Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev Mol Cell Biol 2011;12(6):349-61. https://doi.org/10.1038/nrm3118
  11. Yagi M, Ji F, Charlton J, Cristea S, Messemer K, Horwitz N, Di Stefano B, Tsopoulidis N, Hoetker MS, Huebner AJ, et al. Dissecting dual roles of MyoD during lineage conversion to mature myocytes and myogenic stem cells. Genes Dev 2021;35(17-18):1209-28. https://doi.org/10.1101/gad.348678.121
  12. Lluis F, Ballestar E, Suelves M, Esteller M, Munoz-Canoves P. E47 phosphor- ylation by p38 MAPK promotes MyoD/E47 association and muscle-specific gene transcription. EMBO J 2005;24(5):974-84. https://doi.org/10.1038/sj.emboj.7600528
  13. Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, BaezaRaja B, Jardi M, Bosch-Comas A, Esteller M, et al. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 2007;26(5):1245-56. https://doi.org/10.1038/sj.emboj.7601587
  14. Serra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, Jones DR, Du K, Jhala US, Simone C, et al. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell 2007;28(2):200-13. https://doi.org/10.1016/j.molcel.2007.08.021
  15. Xie Y, Perry BD, Espinoza D, Zhang P, Price SR. Glucocorticoid-induced CREB activation and myostatin expression in C2C12 myotubes involves phosphodiesterase-3/4 signaling. Biochem Biophys Res Commun 2018;503(3):1409-14. https://doi.org/10.1016/j.bbrc.2018.07.056
  16. Liguori I, Russo G, Aran L, Bulli G, Curcio F, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging 2018;13:913-27. https://doi.org/10.2147/CIA.S149232
  17. Sandri M. Signaling in muscle atrophy and hypertrophy. Physiol (Bethesda, Md) 2008;23:160-70. https://doi.org/10.1152/physiol.00041.2007
  18. Kim DH, Sarbassov DD, Ali SM, Latek RR, Guntur KV, Erdjument-Bromage H, Tempst P, Sabatini DM. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003;11(4):895-904. https://doi.org/10.1016/S1097-2765(03)00114-X
  19. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, Saghatelian A, Nakayama KI, Clohessy JG, Pandolfi PP. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature 2017;541(7636):228-32. https://doi.org/10.1038/nature21034
  20. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Sci (New York, NY) 2001;294(5547):1704-8. https://doi.org/10.1126/science.1065874
  21. Lai K-MV, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ. Conditional activation of at in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 2004;24(21):9295-304. https://doi.org/10.1128/MCB.24.21.9295-9304.2004
  22. Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa CF, Brink M, et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metabol 2008;8(5):411-24. https://doi.org/10.1016/j.cmet.2008.10.002
  23. Marabita M, Baraldo M, Solagna F, Judith Johanna Ceelen, Sartori R, Nolte H, Nemazanyy I, Pyronnet S, Kruger M, Pende M, et al. S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell Reports 2016;17(2):501-13. https://doi.org/10.1016/j.celrep.2016.09.020
  24. Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, RichardBulteau H, Vignaud A, Baas D, Defour A, et al. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 2009;187(6):859-74. https://doi.org/10.1083/jcb.200903131
  25. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol: JASN. 2006;17(7):1807-19. https://doi.org/10.1681/ASN.2006010083
  26. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metabol 2007;6(6):458-71. https://doi.org/10.1016/j.cmet.2007.11.001
  27. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004;117(3):399-412. https://doi.org/10.1016/S0092-8674(04)00400-3
  28. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ. The IGF-1/PI3K/akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004;14(3):395-403. https://doi.org/10.1016/S1097-2765(04)00211-4
  29. Demontis F, Piccirillo R, Goldberg AL, Perrimon N. The influence of skeletal muscle on systemic aging and lifespan. Aging Cell 2013;12(6):943-9. https://doi.org/10.1111/acel.12126
  30. Srikanthan P, Karlamangla AS. Muscle mass index as a predictor of longevity in older adults. Am J Med 2014;127(6):547-53. https://doi.org/10.1016/j.amjmed.2014.02.007
  31. Hughes DC, Stewart CE, Sculthorpe N, Dugdale HF, Yousefian F, Lewis MP, Sharples AP. Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors. Biogerontology 2016;17(3):619-39. https://doi.org/10.1007/s10522-015-9621-9
  32. Morvan F, Rondeau J-M, Zou C, Minetti G, Scheufler C, Scharenberg M, Jacobi C, Brebbia P, Ritter V, Toussaint G, et al. Blockade of activin type II receptors with a dual anti-ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc Natl Acad Sci 2017;114(47):12448.
  33. Suh J, Lee Y-S. Myostatin inhibitors: panacea or predicament for musculoskeletal disorders? J Bone Metab 2020;27(3):151-65. https://doi.org/10.11005/jbm.2020.27.3.151
  34. Cho HT, Kim JH, Lee JH, Kim YJ. Effects of Panax ginseng extracts prepared at different steaming times on thermogenesis in rats. J Ginseng Res 2017;41(3):347-52. https://doi.org/10.1016/j.jgr.2016.07.001
  35. Chu C, Xu S, Li X, Yan J, Liu L. Profiling the ginsenosides of three ginseng products by lc-Q-Tof/ms. J Food Sci 2013;78(5):C653-9. https://doi.org/10.1111/1750-3841.12102
  36. Piao XM, Huo Y, Kang JP, Mathiyalagan R, Zhang H, Yang DU, Kim M, Yang DC, Kang SC, Wang YP. Diversity of ginsenoside profiles produced by various processing technologies. Molecules 2020;25(19).
  37. Ahn S, Siddiqi MH, Aceituno VC, Simu SY, Zhang J, Jimenez Perez ZE, Kim YJ, Yang DC. Ginsenoside Rg5:Rk1 attenuates TNF-α/IFN-γ-induced production of thymus- and activation-regulated chemokine (TARC/CCL17) and LPS-induced NO production via downregulation of NF-κB/p38 MAPK/STAT1 signaling in human keratinocytes and macrophages. In Vitro Cellular Dev Biol Animal 2016;52(3):287-95. https://doi.org/10.1007/s11626-015-9983-y
  38. Choi SY, Kim KJ, Song JH, Lee BY. Ginsenoside Rg5 prevents apoptosis by modulating heme-oxygenase-1/nuclear factor E2-related factor 2 signaling and alters the expression of cognitive impairment-associated genes in thermal stress-exposed HT22 cells. J Ginseng Res 2018;42(2):225-8. https://doi.org/10.1016/j.jgr.2017.02.002
  39. Kim H, Choi P, Kim T, Kim Y, Song BG, Park YT, Choi SJ, Yoon CH, Lim WC, Ko H, et al. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. J Ginseng Res 2021;45(1):134-48. https://doi.org/10.1016/j.jgr.2020.02.005
  40. Lee YY, Park JS, Jung JS, Kim DH, Kim HS. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int J Mol Sci 2013;14(5):9820-33. https://doi.org/10.3390/ijms14059820
  41. Jeong YJ, Hwang MJ, Hong CO, Yoo DS, Kim JS, Kim DY, Lee KW. Anti-hyperglycemic and hypolipidemic effects of black ginseng extract containing increased Rh4, Rg5, and Rk1 content in muscle and liver of type 2 diabetic db/db mice. Food Sci Biotechnol 2020;29(8):1101-12. https://doi.org/10.1007/s10068-020-00753-3
  42. Lee S-Y, Go G-Y, Vuong TA, Kim JW, Lee S, Jo A, An JM, Kim S-N, Seo D-W, Kim J-S, et al. Black ginseng activates Akt signaling, thereby enhancing myoblast differentiation and myotube growth. J Ginseng Res 2018;42(1):116-21. https://doi.org/10.1016/j.jgr.2017.08.009
  43. Seo YS, Shon MY, Kong R, Kang OH, Zhou T, Kim DY, Kwon DY. Black ginseng extract exerts anti-hyperglycemic effect via modulation of glucose metabolism in liver and muscle. J Ethnopharmacol 2016;190:231-40. https://doi.org/10.1016/j.jep.2016.05.060
  44. Andrade M, Hiragun T, Beaven M. Dexamethasone suppresses antigen-induced activation of phosphatidylinositol 3-kinase and downstream responses in mast cells. J Immunol (Baltimore, Md : 1950 2004;172:7254-62. https://doi.org/10.4049/jimmunol.172.12.7254