Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.2.202

Recent Studies on Natural Products that Improve Myogenesis  

Chae, Jongbeom (Department of Food Science and Biotechnology, Kyungpook National University)
Nam, Ju-Ock (Department of Food Science and Biotechnology, Kyungpook National University)
Publication Information
Journal of Life Science / v.30, no.2, 2020 , pp. 202-210 More about this Journal
Abstract
As the elderly population increases, it is becoming important to prevent and treat muscle loss caused by aging or disease. Steroidal androgen in the protein assimilation steroid (AAS) system is mainly used to induce muscle improvement, but it is well known that long-term or excessive doses of AAS result in various side effects, although they are prescribed for various muscle and weight loss treatments. Research is therefore underway to explore natural substances that promote muscle renewal with relatively few side effects. However, despite many studies on the improvement of skeletal muscle and the reduction of muscle disease using natural products, there is still a lack of significant clinical results and mechanism studies. The promotion of muscle regeneration through treatment with natural substances typically involves three mechanisms: positive control of the muscle modulating factor (MRF), activation of the protein synthesis mechanism, and inhibition of the protein breakdown mechanism. A study of plant extracts that are known to have muscle neoplasmic stimulation effects, such as black ginseng, plum, and nutmeg, as well as single substances derived from natural products, such as creatine, catechin, and several fatty acids, is therefore described. We also summarize the mechanisms that have been identified so far through which each of these extracts or single materials facilitates muscle regeneration and the signaling pathways that they mediate.
Keywords
Akt; MRFs (Myogenic regulatory factors); myogenesis; myostatin; skeletal muscle;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Allen, D. L., Hittel, D. S. and McPherron, A. C. 2011. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med. Sci. Sports Exerc. 43, 1828-1835.   DOI
2 Alsolmei, F. A., Li, H., Pereira, S. L., Krishnan, P., Johns, P. W. and Siddiqui, R. A. 2019. Polyphenol-enriched plum extract enhances myotubule formation and anabolism while attenuating colon cancer-induced cellular damage in C2C12 cells. Nutrients 11, 1077.   DOI
3 Barrett-Connor, E. 1995. Testosterone and risk factors for cardiovascular disease in men. Diabetes Metab. 21, 156-161.
4 Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M. and Hemmings, B. A. 1995. Inhibition of glycogen synthase kinase- 3 by insulin mediated by protein kinase B. Nature 378, 785-789.   DOI
5 Deldicque, L., Theisen, D., Bertrand, L., Hespel, P., Hue, L. and Francaux, M. 2007. Creatine enhances differentiation of myogenic C2C12 cells by activating both p38 and Akt/PKB pathways. Am. J. Physiol. Cell Physiol. 293, C1263-C1271.   DOI
6 Devol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J. and Bechtel, P. J. 1990. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am. J. Physiol. 259, E89-E95.
7 Dinev, D., Jordan, B. W., Neufeld, B., Lee, J. D., Lindemann, D., Rapp, U. R. and Ludwig, S. 2001. Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO Rep. 2, 829-834.   DOI
8 Feldman, B. J., Streeper, R. S., Farese, R. V. and Yamamoto, K. R. 2006. Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects. Proc. Natl. Acad. Sci. USA. 103, 15675-15680.   DOI
9 Go, G. Y., Lee, S. J., Jo, A., Lee, J., Seo. D. W., Kang, J. S., Kim, S. K., Kim, S. N., Kim, T. K. and Bae, G. U. 2017. Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth. J. Ginseng. Res. 41, 608-614.   DOI
10 Gredinger, E., Gerber, A. N., Tamir, Y., Tapscott, S. J. and Bengal, E. 1998. Mitogen-activated protein kinase pathway is involved in the differentiation of muscle cells. J. Biol. Chem. 273, 10436-10444.   DOI
11 Grunfeld, C., Kotler, D. P., Dobs, A., Glesby, M., Bhasin, S. and Group, O. S. 2006. Oxandrolone in the treatment of HIV-associated weight loss in men: a randomized, doubleblind, placebo-controlled study. J. Acquir. Immune Defic. Syndr. 41, 304-314.   DOI
12 Hindi, S. M., Tajrishi, M. M. and Kumar, A. 2013. Signaling mechanisms in mammalian myoblast fusion. Sci. Signal. 6, 272.   DOI
13 Guo, T., Jou, W., Chanturiya, T., Portas, J., Gavrilova, O. and McPherron, A. C. 2009. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity. PLoS One 4, 3.
14 Hall, R. C., Hall, R. C. and Chapman, M. J. 2005. Psychiatric complications of anabolic steroid abuse. Psychosomatics 46, 285-290.   DOI
15 Hamrick, M. W., McPherron, A. C. and Lovejoy, C. O. 2002. Bone mineral content and density in the humerus of adult myostatin-deficient mice. Calcif. Tissue Int. 71, 1.   DOI
16 Hwang, S. Y, Kang, Y. J., Sung, B., Kim, M., Kim, D. H., Lee, Y., Yoo, M. A., Kim, C. M., Chung, H. Y. and Kim, N. D. 2015. Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway. Int. J. Mol. Med. 36, 1073-1080.   DOI
17 Jung, H. Y., Kang, S. Y., Hyun, S. Y., Kwon, Y. and Park, Y. K. 2019. Effects of chaenomelis fructusextract on the regulation of myoblasts differentiation and the expression of biogenetic factors in C2C12 myotubes. Kor. J. Herbology 34, 99-107.   DOI
18 Jones, N. C., Fedorov, Y. V., Rosenthal, R. S. and Olwin, B. B. 2001. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J. Cell. Physiol. 186, 104-115.   DOI
19 Kenny, A. M., Prestwood, K. M., Gruman, C. A., Marcello, K. M. and Raisz, L. G. 2001. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J. Am. Geriatr. Soc. 56, M266-M272.
20 Berger, J. R., Pall, L., Hall, C. D., Simpson, D. M., Berry, P. S. and Dudley, R. 1996. Oxandrolone in AIDS-wasting myopathy. AIDS 10, 1657-1662.   DOI
21 Bhatnagar, S., Kumar, A., Makonchuk, D. Y., Li, H. and Kumar, A. 2010. Transforming growth factor-${\beta}$-activated kinase 1 is an essential regulator of myogenic differentiation. J. Biol. Chem. 285, 6401-6411.   DOI
22 Bodine, S. C., Stiff, T. N., Gonzalez, M, Kline W. O., Stover, G. L., Bauerlein, R., Zlotchenko, E., Scrimgeour, A., Lawrence, J. C., Glass, D. J. and Yancopoulos, G. D. 2001. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3, 1014-1019.   DOI
23 Cella, P. S., Marinello, P. C., Borqes, F. H., Ribeiro, D. F., Chimin, P., Testa, M. T. J., Guirro, P. B., Duarte, J. A., Cecchini, R., Guarnier, F. A. and Deminice, R. 2019. Creatine supplementation in Walker-256 tumor-bearing rats prevents skeletal muscle atrophy by attenuating systemic inflammation and protein degradation signaling. Eur. J. Nutr. doi: 10.1007/s00394-019-01933-6.
24 Chal, J. and Pourquie, O. 2017. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144, 2104-2122.   DOI
25 Chang, L. and Karin, M. 2001. Mammalian MAP kinase signalling cascades. Nature 410, 37-40.   DOI
26 Cho, S., Hong, R., Yim, P., Yeom, M., Lee, B., Yang, W. M., Hong, J., Lee, H. S. and Hahm, D. H. 2018. An herbal formula consisting of Schisandra chinensis (Turcz.) Baill, Lycium chinense Mill and Eucommia ulmoides Oliv alleviates disuse muscle atrophy in rats. J. Ethnopharmacol. 213, 328-339.   DOI
27 Choi, Y. K., et al. 2014. Effect of Sipjeondaebo-tang on cancer-induced anorexia and cachexia in CT-26 tumor-bearing mice. Mediators Inflamm. 2014,
28 Kjaer, M. 2004. Conversion of mechanical loading into functional adaptation of tendon and skeletal muscle: a role for extracellular matrix. Physiol. Rev. 84, 649-698.   DOI
29 Kim, A., Im, M., Gu, M. J. and Ma, J. Y. 2016. Citrus unshiu peel extract alleviates cancer-induced weight loss in mice bearing CT-26 adenocarcinoma. Sci. Rep. 6, 1-13.   DOI
30 Kim, A., Im, M. and Ma, J. Y. 2018. A novel herbal formula, SGE, induces endoplasmic reticulum stress-mediated cancer cell death and alleviates cachexia symptoms induced by colon-26 adenocarcinoma. Oncotarget 9, 16284.   DOI
31 L, Allen. D., Hittel, D. S. and McPherron, A. C. 2011. Expression and function of myostatin in obesity, diabetes, and exercise adaptation. Med. Sci. Sports Exerc. 43, 1828.   DOI
32 Lecker, S. H. and Mitch, W. E. 2011. Proteolysis by the ubiquitin-proteasome system and kidney disease. J. Am. Soc. Nephrol. 22, 821-824.   DOI
33 Lee, H. J., Heo, J. W., Kim, A. R., Kweon, M., Nam, S., Lim, J. S., Sung, M. K., Kim, S. E. and Ryu, J. H. 2019. Z-ajoene from crushed garlic alleviates cancer-induced skeletal muscle atrophy. Nutrients 11, 2724.   DOI
34 Lee, J. H., Tachibana, H., Morinaga, Y., Fujimura, Y. and Yamada, K. 2009. Modulation of proliferation and differentiation of C2C12 skeletal muscle cells by fatty acids. Life Sci. 84, 415-420.   DOI
35 Lee, S. J. and Glass, D. J. 2011. Treating cancer cachexia to treat cancer. Skelet. Muscle 1, 2.   DOI
36 Lee, S. J. and McPherron, A. C. 2001. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA. 98, 9306-9311.   DOI
37 Lin, J., Arnold, H. B., Della-Fera, M. A., Azain, M. J., Hartzell, D. L. and Baile, C. A. 2002. Myostatin knockout in mice increases myogenesis and decreases adipogenesis. Biochem. Biophys. Res. Commun. 291, 701-706.   DOI
38 Lee, S. Y., et al. 2018. Black ginseng activates Akt signaling, thereby enhancing myoblast differentiation and myotube growth. J. Ginseng Res. 42, 116-121.   DOI
39 Leevers, S., Weinkove, D., MacDougall, L., Hafen, E. and Waterfield, M. 1996. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J. 15, 6584-6594.   DOI
40 Li, P., Liu, A., Xiongt, W., Lin, H., Xiao, W., Huang, J., Zhang, S. and Liu, Z. 2020. Catechins enhance skeletal muscle performance. Crit. Rev. Food. Sci. Nutr. 60, 515-528.   DOI
41 Loudon, J. K. 2006. Principles of pharmacology for athletic trainers. Phys. Ther. 86, 459-459.   DOI
42 Mathew, S. J. 2011. InACTIVatINg cancer cachexia. Dis. Model Mech. 4, 283-285.   DOI
43 Matsumoto, A. M. 1990. Effects of chronic testosterone administration in normal men: safety and efficacy of high dosage testosterone and parallel dose-dependent suppression of luteinizing hormone, follicle-stimulating hormone, and sperm production. J. Clin. Endocrinol. Metab. 70, 282-287.   DOI
44 McPherron, A. C. and Lee, S. J. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA. 94, 12457-12461.   DOI
45 Melnik, B., Jansen, T. and Grabbe, S. 2007. Abuse of anabolic-androgenic steroids and bodybuilding acne: an underestimated health problem. J. Dtsch. Dermatol. Ges. 5, 110-117.   DOI
46 Pallafacchina, G., Calabria, E., Serrano, A. L., Kalhovde, J. M. and Schiaffino, S. 2002. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc. Natl. Acad. Sci. USA. 99, 9213-9218.   DOI
47 Meriane, M., Roux, P., Primig, M., Fort, P. and Gauthier-Rouviere, C. 2000. Critical activities of Rac1 and Cdc42Hs in skeletal myogenesis: antagonistic effects of JNK and p38 pathways. Mol. Biol. Cell. 11, 2513-2528.   DOI
48 Meriggiola, M. C., Costantino, A., Bremner, W. J. and Morselli-Labate, A. M. 2002. Higher testosterone dose impairs sperm suppression induced by a combined androgen-progestin regimen. J. Androl. 23, 684-690.
49 Montagne, J., Stewart, M. J., Stocker, H., Hafen, E., Kozma, S. C. and Thomas, G. 1999. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126-2129.   DOI
50 Perdiguero, E., Ruiz-Bonilla, V., Gresh, L., Hui, L., Ballestar, E., Sousa-Victor, P., Baeza-Raja, B., Jardi, M., Bosch-Comas, A., Esteller, M., Caelles, C, Serrano, A. L., Wagner, E. F. and Munoz-Canoves, P. 2007. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of $p38{\alpha}$ in abrogating myoblast proliferation. EMBO J. 26, 1245-1256.   DOI
51 Pratiwi, Y. S., , Lesmana, R., Goenawan, H., Sylviana, N., Setiawan, I., Tarawan, V. M., Lestari, K., Abdulah, R., Dwipa, L., Purba, A. and Supratman, U. 2018. Nutmeg extract increases skeletal muscle mass in aging rats partly via IGFl-AKT-mTOR pathway and inhibition of autophagy. Evid. Based Complement Alternat. Med. 2018, NA.
52 Rodgers, B. D. and Garikipati, D. K. 2008. Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr. Rev. 29, 513-534.   DOI
53 Wang, Y., Ma, J., Qiu, W., Zhang, J., Feng, S., Zhou, X., Wang, X., Jin, L., Long, K., Liu, L., Xiao, W., Tang, Q., Zhu, L., Jiang, Y., Li, X. and Li, M. 2018. Guanidinoacetic acid regulates myogenic differentiation and muscle growth through miR-133a-3p and miR-1a-3p co-mediated Akt/mTOR/S6K signaling pathway. Int. J. Mol. Sci. 19, 792-800.   DOI
54 Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D. and Glass, D. J. 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nat. Cell Biol. 3, 1009-1013.   DOI
55 Rommel, C., Bodine, S. C., Clarke, B. A., Rossman, R., Nunez, L., Stitt, T. N., Yancopoulos, G. D. and Glass, D. J. 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. Nat. Cell Biol. 3, 1009-1013.   DOI
56 W, B. E., McNaughton, L. and Marshall-Gradisnik, S. M. 2011. Is there a potential immune dysfunction with anabolic androgenic steroid use?: A review. Mini Rev. Med. Chem. 11, 438-445.   DOI
57 Wu, Z., Woodring, P. J., Bhakta, K. S., Tamura, K., Wen, F., Feramisco, J. R., Karin, M., Wang, J. Y. and Puri, P. L. 2000. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol. Cell. Biol. 20, 3951-3964.   DOI
58 Yamamoto, Y., Moore, R., Hess, H. A., Guo, G. L., Gonzalez, F. J., Korach, K. S., Maronpot, R. R. and Negishi, M. 2006. Estrogen receptor ${\alpha}$ mediates $17{\alpha}$-ethynylestradiol causing hepatotoxicity. J. Biol. Chem. 281, 16625-16631.   DOI
59 Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C. and Neufeld, T. P. 2000. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712-2724.   DOI
60 Zhao, B., Wall, R. J. and Yang, J. 2005. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochem. Biophys. Res. Commun. 337, 248-255.   DOI
61 Ryan, T., Liu, J., Chu, A., Wang, L., Blais, A. and Skerjanc, I. S. 2012. Retinoic Acid enhances skeletal myogenesis in human embryonic stem cells by expanding the premyogenic progenitor population. Stem. Cell. Rev. Rep. 8, 482-493.   DOI
62 Senesi, P., Luzi, L., Montesano, A., Mazzocchi, N. and Terruzzi, I. 2013. Betaine supplement enhances skeletal muscle differentiation in murine myoblasts via IGF-1 signaling activation. J. Transl. Med. 11, 174.   DOI
63 Song, M. Y. 2015. Effect of root of atractylodes macrocephala Koidzumi on myogenesis in C2C12 cells. J. Kor. Med. Obes. Res. 15.1, 38-44.   DOI
64 Sung, B., Hwang, S. Y., Kim, M. J., Kim, M., Jeong, J. W., Kim, C. M., Chung, H. Y. and Kim, N. D. 2015. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats. Int. J. Mol. Med. 36, 792-800.   DOI
65 Turillazzi, E., Perilli, G., Di Paolo, M., Neri, M., Riezzo, I. and Fineschi, V. 2011. Side effects of AAS abuse: an overview. Mini. Rev. Med. Chem. 11, 374-389.   DOI
66 Tortorella, L. L., Milasincic, D. J. and Pilch, P. F. 2001. Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J. Biol. Chem. 276, 13709-13717.   DOI
67 Trendelenburg, A. U., Meyer, A., Rohner, D., Boyle, J., Hatakeyama, S. and Glass, D. J. 2009. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol. 296, C1258-C1270.   DOI
68 Trenton, A. J. and Currier, G. W. 2005. Behavioural manifestations of anabolic steroid use. CNS Drugs 19, 571-595.   DOI
69 Vivanco, I. and Sawyers, C. L. 2002. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501.   DOI