• Title/Summary/Keyword: gibberellins

Search Result 75, Processing Time 0.022 seconds

Gibberellins Production and Identification of Endophytic Fungi Isolated from Aquatic Plant in Fresh Water (담수에 자생하는 수생식물에서 분리된 내생균류의 지베렐린 생산과 동정)

  • You, Young-Hyun;Kang, Sang-Mo;Choi, Yu-Mi;Lee, Myung-Chul;Kim, Jong-Guk
    • The Korean Journal of Mycology
    • /
    • v.43 no.1
    • /
    • pp.71-76
    • /
    • 2015
  • Aquatic plant Hydrocharis dubia (Blume) Backer was collected from the Dalsung wetland in Daegu. Sixteen endophytic fungi with different colony morphologies were isolated from the roots of aquatic plants. Waito-c rice (WR) seedlings were treated with fungal culture filtrates (FCF) for screening plant growth-promoting activity. In the results, HD1008 strain isolated from aquatic plant showed highest plant growth-promoting activity. The FCF of HD1008 strain was analyzed using gas chromatography mass spectrometry (GC/MS) with selected ion monitoring (SIM). Analysis of the FCF of HD1008 strain found that it contained gibberellins (GA) ($GA_1$, 1.2 ng/100 mL; $GA_4$, 5 ng/100 mL). Phylogenetic tree of HD1008 strain was constructed by partial internal transcribed spacer (ITS) region and partial beta-tubulin gene sequences. Therefore, we describe HD1008 strain as a new gibberellin-producing Penicillium trzebinskii based on morphological and molecular characteristics.

Changes of Endogenous Gibberellins in Tubers of Chinese Yam(Dioscorea opposita) during Storage Period

  • Lee, In-Jung;Kim, Sang-Kuk;Lee, Sang-Chul;Lee, Bong-Ho;Jeong, Hyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.281-285
    • /
    • 2003
  • For storage periods of tubers in Chinese yam, the levels of $\textrm{GA}_{44}$ and $\textrm{GA}_{20}$ was constant, meanwhile both $\textrm{GA}_{53}$ and $\textrm{GA}_{19}$ level were always higher than that of $\textrm{GA}_{44}$ and $\textrm{GA}_{20}$$\textrm{GA}_9$ content as precursor of $\textrm{GA}_4$ was not changed during storage. $\textrm{GA}_{24}$ content was low to below 0.2 ng for 90 days after storage, $\textrm{GA}_{36}$ content as precursor of $\textrm{GA}_4$ like $\textrm{GA}_9$ was about 6-8 fold higher than that of $\textrm{GA}_9$ during storage. GA contents of the two gibberellin biosynthetic pathways were gradually increased when storage periods were progressed. Bioactive GA$_1$ content as the GA members of an early C-13 hydroxylation was always constant, and its content was very low as below 0.1ng per dry weight, meanwhile, bioactive $\textrm{GA}_4$ content as the GA members of non C-13 hydroxylation was drastically increased, also, its content was highest at 90 days after storage, and then decreased at 120 days after storage. Consequently, we suggest that $\textrm{GA}_4$ may be involved in controlling tuber sprouting in Chinese yam.

Phoma herbarum as a New Gibberellin-Producing and Plant Growth-Promoting Fungus

  • Hamayun, Muhammad;Khan, Sumera Afzal;Khan, Abdul Latif;Rehman, Gauhar;Sohn, Eun-Young;Shah, Aamer Ali;Kim, Sang-Kuk;Joo, Gil-Jae;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1244-1249
    • /
    • 2009
  • Endophytic fungi are known for the production of valuable metabolites, but information on the gibberellin production capacity of this group is limited. We isolated 9 endophytic fungi from the roots of salt-stressed soybean plants and screened them on waito-c rice, in order to identify plant growth promoting fungal strains. The fungal isolate TK-2-4 gave maximum plant length (20.35 cm) promotion in comparison with wild-type Gibberella fujikuroi (19.5 cm). In a separate experiment, bioassay of TK-2-4 promoted plant length and biomass of soybean cultivar Taegwangkong. The TK-2-4 culture filtrate was analyzed for the presence of gibberellins, and it was found that all physiologically active gibberellins, especially $GA_4$ and $GA_7$, were present in higher amounts ($GA_1$, 0.11 ng/ml; $GA_3$, 2.91 ng/ml; $GA_4$, 3.21 ng/ml; and $GA_7$, 1.4 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.05 ng/ml), $GA_{12}$ (0.23 ng/ ml), $GA_{15}$ (0.42 ng/ml), $GA_{19}$ (0.53 ng/ml), and $GA_{20}$ (0.06 ng/ml). The fungal isolate TK-2-4 was later identified as a new strain of Phoma herbarum, through the phylogenetic analysis of 28S rDNA sequence.

Isolation and Identification of Fungal Strains Producing Gibberellins from the Root of plants (식물뿌리내부에 존재하는 지베렐린 생산균 분리와 동정)

  • Rim, Soon-Ok;Lee, Jin-Hyung;Khan, Sumera Afzal;Lee, In-Jung;Rhee, In-Koo;Lee, Kyung-Soo;Kim, Jong-Guk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.357-363
    • /
    • 2007
  • 249 fungal strains were isolated from the roots of 26 plants, and the production of GAs was spectrophotometric ally examined. As a result 76 fungal strains were shown to produce GAs. Bioassay of culture broth from seventy six fungal strains producing GAs was carried out with waito-c rice, that is dwarf rice. The seventy six fungi with GAs-producing activity were incubated for seven days in 40 mL of Czapek's liquid medium at $30^{\circ}C$ and 180 rpm, and the culture broth of fungi were treated on the 2-leaf rice sprout. Fifteen of these showed plant growth promoting activity and the amount of each GAs in the medium was measured by Gas chromatographymass spectrometer (GC-MS). Nine of these fungi were also identified by genetic analysis of the nucleotide sequences in the internal transcribed spacer region of the ribosomal DNA.

Isolation of Gibberellins-Producing Fungi from the Root of Several Sesamum indicum Plants

  • CHOI, WHA-YOUL;RIM, SOON-OK;LEE, JIN-HYUNG;LEE, JIN-MAN;LEE, IN-JUNG;CHO, KANG-JIN;RHEE, IN-KOO;KWON, JUNG-BAE;KIM, JONG-GUK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • Gibberellins (GAs) play important roles in plant growth and development. Fifty-four fungi were isolated from the roots of 4 kinds of Sesamum indicum plants, and the production of GAs was spectrophotometrically examined. The number of GA-producing fungi was two strains from S. indicum, four strains from Gold S. indicum, and five strains from Brown S. indicum. Eleven fungi with GAs-producing activity were incubated for seven days in 40 ml of Czapek's liquid medium at $25^{\circ}C$ and 120 rpm, and the amount of each GA in the medium was measured by gas chromatographymass spectrometery (GC-MS). Penicillium commune KNU5379 produced more $GA_3$, $GA_4$, and $GA_7$ than Gibberella fujikuroi, Fusarium proliferatum, and Neurospora crassa which are known as GAs-producing fungi. GAs-producing activity of the P. commune KNU5379 was shown to produce 71.69 ng of $GA_1$, 252.42 ng of $GA_3$, 612.00 ng of $GA_4$, 259.00 ng of $GA_7$, and 202.69 ng of $GA_9$ in 25 ml of liquid medium. Bioassay of culture fluid of GA-producing fungi was also performed on rice sprout.

Gibberellin-Producing Endophytic Fungi Isolated from Monochoria vaginalis

  • Ahmad, Nadeem;Hamayun, Muhammad;Khan, Sumera Afzal;Khan, Abdul Latif;Lee, In-Jung;Shin, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1744-1749
    • /
    • 2010
  • The role of endophytic fungi in plant growth and development is well documented. However, endophytic fungi with growth promotion capacity have never been isolated from weeds previously. In the current study, we isolated 8 fungal endophytes from the roots of Monochoria vaginalis, a serious weed of rice paddy in Korea. These isolates were screened on Waito-C, in order to identify plant growth promoting metabolites. Two fungal isolates (M5.A & M1.5) significantly promoted the plant height and shoot length of Waito-C during preliminary screening experiments. The culture filtrates (CFs) of M5.A and M1.5 also promoted the shoot length of Echinocloa crusgalli. Gibberellins (GAs) analysis of the CFs of M5.A and M1.5 showed that these endophytic fungi secrete higher quantities of GAs as compared with wild-type G. fujikuroi KCCM12329. The CF of M5.A contained bioactive GAs ($GA_3$, 2.8 ng/ml; $GA_4$, 2.6 ng/ml, and $GA_7$, 6.68 ng/ml) in conjunction with physiologically inactive $GA_9$ (1.61 ng/ml) and $GA_{24}$ (0.18 ng/ml). The CF of M1.5 contained physiologically active GAs ($GA_3$, 1.64 ng/ml; $GA_4$, 1.37 ng/ml and $GA_7$, 6.29 ng/ml) in conjunction with physiologically inactive $GA_9$ (3.44 ng/ml), $GA_{12}$ (0.3 ng/ml), and $GA_{24}$ (0.59 ng/ml). M5.A and M1.5 were identified as new strains of Penicillium sp. and Aspergillus sp., respectively, based on their 18S rDNA sequence homology and phylogenetic analysis.

Diversity and Plant Growth-Promoting Effects of Fungal Endophytes Isolated from Salt-Tolerant Plants

  • Khalmuratova, Irina;Choi, Doo-Ho;Woo, Ju-Ri;Jeong, Min-Ji;Oh, Yoosun;Kim, Young-Guk;Lee, In-Jung;Choo, Yeon-Sik;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1680-1687
    • /
    • 2020
  • Fungal endophytes are symbiotic microorganisms that are often found in asymptomatic plants. This study describes the genetic diversity of the fungal endophytes isolated from the roots of plants sampled from the west coast of Korea. Five halophytic plant species, Limonium tetragonum, Suaeda australis, Suaeda maritima, Suaeda glauca Bunge, and Phragmites australis, were collected from a salt marsh in Gochang and used to isolate and identify culturable, root-associated endophytic fungi. The fungal internal transcribed spacer (ITS) region ITS1-5.8S-ITS2 was used as the DNA barcode for the classification of these specimens. In total, 156 isolates of the fungal strains were identified and categorized into 23 genera and two phyla (Ascomycota and Basidiomycota), with Dothideomycetes and Sordariomycetes as the predominant classes. The genus Alternaria accounted for the largest number of strains, followed by Cladosporium and Fusarium. The highest diversity index was obtained from the endophytic fungal group associated with the plant P. australis. Waito-C rice seedlings were treated with the fungal culture filtrates to analyze their plant growth-promoting capacity. A bioassay of the Sm-3-7-5 fungal strain isolated from S. maritima confirmed that it had the highest plant growth-promoting capacity. Molecular identification of the Sm-3-7-5 strain revealed that it belongs to Alternaria alternata and is a producer of gibberellins. These findings provided a fundamental basis for understanding the symbiotic interactions between plants and fungi.

Endophytic Fungi of Salt-Tolerant Plants: Diversity and Ability to Promote Plant Growth

  • Khalmuratova, Irina;Choi, Doo-Ho;Kim, Jong-Guk;Lee, In–Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1526-1532
    • /
    • 2021
  • Suaeda australis, Phragmites australis, Suaeda maritima, Suaeda glauca Bunge, and Limonium tetragonum in the Seocheon salt marsh on the west coast of the Korean Penincula were sampled in order to identify the endophytes inhabiting the roots. A total of 128 endophytic fungal isolates belonging to 31 different genera were identified using the fungal internal transcribed spacer (ITS) regions and the 5.8S ribosomal RNA gene. Fusarium, Paraconiothyrium and Alternaria were the most commonly isolated genera in the plant root samples. Various diversity indicators were used to assess the diversity of the isolated fungi. Pure cultures containing each of the 128 endophytic fungi, respectively, were tested for the plant growth-promoting abilities of the fungus on Waito-C rice germinals. The culture filtrate of the isolate Lt-1-3-3 significantly increased the growth of shoots compared to the shoots treated with the control. Lt-1-3-3 culture filtrate was analyzed and showed the presence of gibberellins (GA1 2.487 ng/ml, GA3 2.592 ng/ml, GA9 3.998, and GA24 6.191 ng/ml). The culture filtrate from the Lt-1-3-3 fungal isolate produced greater amounts of GA9 and GA24 than the wild-type Gibberella fujikuroi, a fungus known to produce large amounts of gibberellins. By the molecular analysis, fungal isolate Lt-1-3-3 was identified as Gibberella intermedia, with 100% similarity.