Browse > Article
http://dx.doi.org/10.4014/jmb.1005.05018

Gibberellin-Producing Endophytic Fungi Isolated from Monochoria vaginalis  

Ahmad, Nadeem (Department of Botany, Islamia College University)
Hamayun, Muhammad (Department of Botany, Abdul Wali Khan University)
Khan, Sumera Afzal (Center of Biotechnology and Microbiology, University of Peshawar)
Khan, Abdul Latif (School of Applied Biosciences, Kyungpook National University)
Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
Shin, Dong-Hyun (School of Applied Biosciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.12, 2010 , pp. 1744-1749 More about this Journal
Abstract
The role of endophytic fungi in plant growth and development is well documented. However, endophytic fungi with growth promotion capacity have never been isolated from weeds previously. In the current study, we isolated 8 fungal endophytes from the roots of Monochoria vaginalis, a serious weed of rice paddy in Korea. These isolates were screened on Waito-C, in order to identify plant growth promoting metabolites. Two fungal isolates (M5.A & M1.5) significantly promoted the plant height and shoot length of Waito-C during preliminary screening experiments. The culture filtrates (CFs) of M5.A and M1.5 also promoted the shoot length of Echinocloa crusgalli. Gibberellins (GAs) analysis of the CFs of M5.A and M1.5 showed that these endophytic fungi secrete higher quantities of GAs as compared with wild-type G. fujikuroi KCCM12329. The CF of M5.A contained bioactive GAs ($GA_3$, 2.8 ng/ml; $GA_4$, 2.6 ng/ml, and $GA_7$, 6.68 ng/ml) in conjunction with physiologically inactive $GA_9$ (1.61 ng/ml) and $GA_{24}$ (0.18 ng/ml). The CF of M1.5 contained physiologically active GAs ($GA_3$, 1.64 ng/ml; $GA_4$, 1.37 ng/ml and $GA_7$, 6.29 ng/ml) in conjunction with physiologically inactive $GA_9$ (3.44 ng/ml), $GA_{12}$ (0.3 ng/ml), and $GA_{24}$ (0.59 ng/ml). M5.A and M1.5 were identified as new strains of Penicillium sp. and Aspergillus sp., respectively, based on their 18S rDNA sequence homology and phylogenetic analysis.
Keywords
Penicillium sp.; Aspergillus sp.; gibberellins; endophytic fungi; Monochoria vaginalis, growth promotion;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Pitt, J. I. 1998. A Laboratory Guide to Common Penicillium Species. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing, North Ryde NSW.
2 Step, J. R. 2004. The role of weeds as sources of pharmaceuticals. J. Ethnopharmacol. 92: 163-166.   DOI   ScienceOn
3 Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231.   DOI   ScienceOn
4 Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011.   DOI   ScienceOn
5 MacMillan, J. 2000. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442.
6 Hamayun, M., S. A. Khan, I. Iqbal, Y. H. Hwang, D. H. Shin, E. Y. Sohn, B. H. Lee, C. I. Na, and I. J. Lee. 2009. Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth. J. Microbiol. 47: 425-430.   과학기술학회마을   DOI   ScienceOn
7 Hasan, H. A. H. 2002. Gibberellin and auxin production by plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinna Vyroba 48: 101-106.
8 Waterhouse, D. F. 1993. Prospects for biological control of paddy weeds in Southeast Asia and some recent successes in the biological control of aquatic weeds. Food and Fertilizer Technology Center, Extension Bulletin, 366, Taipei, Taiwan.
9 Tsavkelova, E. A., C. Bomke, A. I. Netrusov, J. Weiner, and B. Tudzynski. 2008. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet. Biol. 45: 1393-1403.   DOI   ScienceOn
10 Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signaling pathway components. BMC Plant Biol. 7: 65.   DOI   ScienceOn
11 Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience 42: 43-50.   DOI   ScienceOn
12 Zou, W. X. and R. X. Tan. 1999. Advances in Plant Science, Vol. 2, pp. 183-190. China Higher Education Press, Beijing.
13 Malinowski, D. P. and D. P. Belesky. 1999. Neotyphodium coenophialum-endophyte infection affects the ability of tall fescue to use sparingly available phosphorus. J. Plant Nutr. 22: 835-853.   DOI
14 Tarafdar, J. C. and H. Marschner. 1995. Dual inoculation with Aspergillus fumigatus and Glomus mosseae enhances biomass production and nutrient uptake in wheat (Triticum aestivum L.) supplied with organic phosphorus as Na-phytate. Plant Soil 173: 97-102.   DOI   ScienceOn
15 Tarafdar, J. C., A. V. Rao, and K. Bala. 1998. Production of phosphatases by fungi isolated from desert soils. Folia Microbiol. 33: 453-457.
16 Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the Pharmaceutical Society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533.   DOI   ScienceOn
17 Takahashi, N., B. O. Phinney, and J. MacMillan. 1991. Gibberellins. Springer, New York.
18 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
19 Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206.
20 Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48-R48.   DOI   ScienceOn
21 Marquez, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant-three way symbioses required for thermal tolerance, Science 315: 513-515.   DOI   ScienceOn
22 Martin, G. C. 1983. In A. Crozier (ed.). The Biochemistry and Physiology of Gibberellins, Vol 2, pp. 395-444. Praeger, New York.
23 Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60: 52-60.   DOI   ScienceOn
24 Davies, P. J. 2004. Regulatory factors in hormone action: Level, location and signal transduction, pp. 16-35. In P. J. Davies (ed.). Plant Hormones: Biosynthesis, Signal Transduction, Action. Kluwer, Dordrecht.
25 Franck, C., J. Lammertyn, and B. Nicolaï. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium, eds. F. Mencarelli and P. Tonutti. Acta Hort. 682: 1991-1998.
26 Frisvad, J. C. and D. Filtenborg. 1989. Terverticillate penicilia: Chemotaxonomy and mycotoxin production. Mycologia 81: 837-861.   DOI
27 Greenberger, P. A. 2002. Allergic bronchopulmonary aspergillosis. J. Allergy Clin. Immunol. 110: 685-692.   DOI   ScienceOn
28 Hamayun, M., S. A. Khan, A. L. Khan, G. Rehman, E. Y. Sohn, S. K. Kim, G. J. Joo, and I. J. Lee. 2009. Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J. Microbiol. Biotechnol. 19: 1244-1249.   과학기술학회마을   DOI   ScienceOn
29 Choi, W. Y., S. O. Rim, J. H. Lee, J. M. Lee, I. J. Lee, K. J. Cho, I. K. Rhee, J. B. Kwon, and J. G. Kim. 2005. Isolation of gibberellins producing fungi from the root of several Sesamum indicum plants. J. Microbiol. Biotechnol. 15: 22-28.   과학기술학회마을
30 Alexopoulos, C., C. Mims, and M. Blackwell. 1996. Introductory Mycology. Wiley & Sons, Inc., New York.