Browse > Article
http://dx.doi.org/10.4014/jmb.0901.030

Phoma herbarum as a New Gibberellin-Producing and Plant Growth-Promoting Fungus  

Hamayun, Muhammad (School of Applied Biosciences, Kyungpook National University)
Khan, Sumera Afzal (Centre of Biotechnology and Microbiology, University of Peshawar)
Khan, Abdul Latif (School of Applied Biosciences, Kyungpook National University)
Rehman, Gauhar (Department of Genetic Engineering, Kyungpook National University)
Sohn, Eun-Young (School of Applied Biosciences, Kyungpook National University)
Shah, Aamer Ali (Department of Biotechnology, Quaid-i-Azam University)
Kim, Sang-Kuk (Institute for Bioresources Research, Gyongbuk Provincial Agricultural Technology Administration)
Joo, Gil-Jae (Institute of Agricultural Science and Technology, Kyungpook National University)
Lee, In-Jung (School of Applied Biosciences, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1244-1249 More about this Journal
Abstract
Endophytic fungi are known for the production of valuable metabolites, but information on the gibberellin production capacity of this group is limited. We isolated 9 endophytic fungi from the roots of salt-stressed soybean plants and screened them on waito-c rice, in order to identify plant growth promoting fungal strains. The fungal isolate TK-2-4 gave maximum plant length (20.35 cm) promotion in comparison with wild-type Gibberella fujikuroi (19.5 cm). In a separate experiment, bioassay of TK-2-4 promoted plant length and biomass of soybean cultivar Taegwangkong. The TK-2-4 culture filtrate was analyzed for the presence of gibberellins, and it was found that all physiologically active gibberellins, especially $GA_4$ and $GA_7$, were present in higher amounts ($GA_1$, 0.11 ng/ml; $GA_3$, 2.91 ng/ml; $GA_4$, 3.21 ng/ml; and $GA_7$, 1.4 ng/ml) in conjunction with physiologically inactive $GA_9$ (0.05 ng/ml), $GA_{12}$ (0.23 ng/ ml), $GA_{15}$ (0.42 ng/ml), $GA_{19}$ (0.53 ng/ml), and $GA_{20}$ (0.06 ng/ml). The fungal isolate TK-2-4 was later identified as a new strain of Phoma herbarum, through the phylogenetic analysis of 28S rDNA sequence.
Keywords
Phoma herbarum; gibberellin production; endophytic fungi; soybean; growth promotion;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Cruz, Jos$\acute{e}$ Fausto Rivero,Martha Mac$\acute{i}$as, Carlos M. Cerda-Garc$\acute{i}$a-Rojas, and Rachel Mata. 2003. A new phytotoxic nonenolide from Phoma herbarum. J. Nat. Prod. 66: 511-514   DOI   ScienceOn
2 Kawaide, H. 2006. Biochemical and molecular analysis of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590   DOI   ScienceOn
3 Lee, I. J., K. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003-1011   DOI   ScienceOn
4 Liu, C. H., J. C. Meng, W. X. Zou, L. L. Huang, H. Q. Tang, and R. X. Tan. 2002. Antifungal metabolite with a new carbon skeleton from Keissleriella sp. YS4108, a marine filamentous fungus. Planta Med. 68: 363-365   DOI   ScienceOn
5 Vandenbussche, F., A. C. Fierro, G. Wiedemann, R. Reski, and D. Van Der Straeten. 2007. Evolutionary conservation of plant gibberellin signalling pathway components. BMC Plant Biol. 7:65   DOI   ScienceOn
6 Vikrant, P., K. K. Verma, R. C. Rajak, and A. K. Pandey. 2006. Characterization of a phytotoxin from Phoma herbarum for management of Parthenium hysterophorus L. J. Phytopathol. 154: 461-468   DOI   ScienceOn
7 Waller, F., B. Achatz, H. Baltruschat, J$\acute{o}$zsef. Fodor, K. Becker, M. Fischer, H$\ddot{u}$ckelhoven, Ralph et al. 2005. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Nat. Acad. Sci. U.S.A. 102: 13386-13391   DOI   ScienceOn
8 Yang, X. B., X. D. Gao, F. B. Han, S. Xu, Y. C. Song, and R. X. Tan. 2005. Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. Biochimie. 87: 747-754   DOI   ScienceOn
9 Higgs, R. E., A. Z. James, D. G. Jeffrey, and D. H. Matthew. 2001. Rapid method to estimate the presence of secondary metabolites in microbial extracts. Appl. Environ. Microbiol. 67: 371-376   DOI   ScienceOn
10 Hasan, H. A. H. 2002. Gibberellin and auxin production plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinn$\acute{a}$ V$\acute{y}$roba 48: 101-106
11 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599   DOI   ScienceOn
12 MacMillan, J. 2002. Occurence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Reg. 20: 387-442   DOI   PUBMED   ScienceOn
13 Lee, H. G., J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyerdra. J. Microbiol. Biotechnol. 11: 515-523   ScienceOn
14 V$\acute{a}$zquez, M. M., S. C$\acute{e}$sar, R. Azc$\acute{o}$n, and J$\acute{o}$se M. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecol. 15: 261-272   DOI   ScienceOn
15 Yang, X. B., X. D. Gao, F. B. Han, and R. X. Tan. 2005. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. B.B.A. Gen. Subj. 1725: 120-127   DOI   ScienceOn
16 Franck, C., J. Lammertyn, and B. Nicolai. 2005. Metabolic profiling using GC-MS to study biochemical changes during long-term storage of pears. Proceedings of 5th International Postharvest Symposium. F. Mencarelli and P. Tonutti (eds.). Acta Hort. 682: 1991-1998
17 Liu, C. H., J. Y. Liu, L. L. Huang, W. X. Zou, and R. X. Tan. 2003. Absolute configuration of keisslone, a new antimicrobial metabolite from Keissleriella sp. YS4108, a marine filamentous fungus. Planta Med. 69: 481-483   DOI   ScienceOn
18 Nishijima, T., M. Koshioka, H. Yamazaki, and L. N. Mander. 1995. Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hort. 394: 199-206
19 Ogas, J. 2000. Gibberellins. Curr. Biol. 10: R48   DOI   ScienceOn
20 Martin, G. C. 1983. The Biochemistry and Physiology of Gibberellins, A. Crozier (ed.). Praeger, New York. 2: 395-444
21 Wagner, T. and M. Fischer. 2002. Proceedings towards a natural classification of worldwide taxa Phellinus s.l. and Inonotus s.l., and phylogenetic relationships of allied genera. Mycologia. 94:998-1016   DOI   ScienceOn
22 Rim, S. O., J. H. Lee, S. A. Khan, I. J. Lee, I. K. Rhee, K. S. Lee, and J. G. Kim. 2007. Isolation and identification of fungal strains producing gibberellins from the root of plants. Kor. J. Microbiol. Biotechnol. 35: 357-363   과학기술학회마을
23 Hoagland, D. R. and D. I. Arnon. 1950. The Water-Culture Method for Growing Plants Without Soil. University of California Agricultural Experiment. Station, Berkley (Circ. 347)
24 Selbmann, L., S. Onofri, M. Fenice, F. Federici, and M. Petruccioli. 2002. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res. Microbiol. 153: 585-592   DOI   ScienceOn
25 Taskinen, T., T. Meklin, M. Nousiainen, T. Human, A. Nevalainen, and M. Korppi. 1997. Moisture and mould problems in schools and respiratory manifestations in schoolchildren: Clinical and skin test findings. Acta Paediatr. 86: 1181-1187   DOI   ScienceOn
26 Yamada, A., T. Ogura, Y. Degawa, and M. Ohmasa. 2001. Isolation of Tricholoma matsutake and T. bakamatsutake cultures from field-collected ectomycorrhizas. Mycoscience. 42: 43-50   DOI   ScienceOn
27 Goldring, W. P. D. and G. A. Pattenden. 2006. The phomactins:A novel group of terpenoid platelet activating factor antagonists related biogenetically to the taxanes. Acc. Chem. Res. 39: 354-361   DOI   ScienceOn
28 Schulz, B. and C. Boyle. 2005. The endophytic continuum. Mycol. Res. 109: 661-686   DOI   ScienceOn
29 Khan, S. A., M. Hamayun, H. J. Yoon, H. Y. Kim, S. J. Suh, S. K. Hwang, et al. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231   DOI   PUBMED   ScienceOn
30 M$\acute{a}$rquez,, L. M., R. S. Redman, R. J. Rodriguez, and M. J. Roossinck. 2007. A virus in a fungus in a plant: Three-way symbioses required for thermal tolerance. Science 315: 513-515   DOI   PUBMED   ScienceOn
31 Daniel, H. M. and W. Meyer. 2003. Evaluation of ribosomal RNA and actin gene sequences for the identification of ascomyceteous yeasts. Int. J. Food Microbiol. 86: 61-78   DOI   PUBMED   ScienceOn
32 Sugita, T. and A. Nishikawa. 2003. Fungal identification method based on DNA sequence analysis. Reassessment of the methods of the pharmaceutical society of Japan and the Japanese pharmacopoeia. J. Health Sci. 49: 531-533   DOI   ScienceOn
33 Han, F., W. Yao, X. B. Yang, X. N. Liu, and X. D. Gao. 2005. Experimental study on anticoagulant and antiplatelet aggregation activity of a chemically sulfated marine polysaccharide YCP. Int. J. Biol. Macromol. 36: 201-207   DOI   ScienceOn
34 Taylor, D. L. and T. D. Bruns. 1999. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: Minimal overlap between the mature forest and resistant propagule communities. Mol. Ecol. 8: 1837-1850   DOI   ScienceOn
35 Vishniac, H. S. 1996. Biodiversity of yeasts and filamentous microfungi in terrestrial Antarctic ecosystems. Biodivers. Conserv. 5: 1365-1378   DOI   ScienceOn
36 Cragg, G. M., D. J. Newman, and K. M. Snader. 1997. Natural products in drug discovery and development. J. Nat. Prod. 60:52-60   DOI   ScienceOn