• Title/Summary/Keyword: gesture trajectory

Search Result 26, Processing Time 0.021 seconds

Recognition of 3D hand gestures using partially tuned composite hidden Markov models

  • Kim, In Cheol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.236-240
    • /
    • 2004
  • Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from decomposition can be remedied by a partial tuning process for such composite HMMs.

Gesture Recognition Method using Tree Classification and Multiclass SVM (다중 클래스 SVM과 트리 분류를 이용한 제스처 인식 방법)

  • Oh, Juhee;Kim, Taehyub;Hong, Hyunki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.238-245
    • /
    • 2013
  • Gesture recognition has been widely one of the research areas for natural user interface. This paper presents a novel gesture recognition method using tree classification and multiclass SVM(Support Vector Machine). In the learning step, 3D trajectory of human gesture obtained by a Kinect sensor is classified into the tree nodes according to their distributions. The gestures are resampled and we obtain the histogram of the chain code from the normalized data. Then multiclass SVM is applied to the classified gestures in the node. The input gesture classified using the constructed tree is recognized with multiclass SVM.

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF

Human Gesture Recognition Technology Based on User Experience for Multimedia Contents Control (멀티미디어 콘텐츠 제어를 위한 사용자 경험 기반 동작 인식 기술)

  • Kim, Yun-Sik;Park, Sang-Yun;Ok, Soo-Yol;Lee, Suk-Hwan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1196-1204
    • /
    • 2012
  • In this paper, a series of algorithms are proposed for controlling different kinds of multimedia contents and realizing interact between human and computer by using single input device. Human gesture recognition based on NUI is presented firstly in my paper. Since the image information we get it from camera is not sensitive for further processing, we transform it to YCbCr color space, and then morphological processing algorithm is used to delete unuseful noise. Boundary Energy and depth information is extracted for hand detection. After we receive the image of hand detection, PCA algorithm is used to recognize hand posture, difference image and moment method are used to detect hand centroid and extract trajectory of hand movement. 8 direction codes are defined for quantifying gesture trajectory, so the symbol value will be affirmed. Furthermore, HMM algorithm is used for hand gesture recognition based on the symbol value. According to series of methods we presented, we can control multimedia contents by using human gesture recognition. Through large numbers of experiments, the algorithms we presented have satisfying performance, hand detection rate is up to 94.25%, gesture recognition rate exceed 92.6%, hand posture recognition rate can achieve 85.86%, and face detection rate is up to 89.58%. According to these experiment results, we can control many kinds of multimedia contents on computer effectively, such as video player, MP3, e-book and so on.

(A Comparison of Gesture Recognition Performance Based on Feature Spaces of Angle, Velocity and Location in HMM Model) (HMM인식기 상에서 방향, 속도 및 공간 특징량에 따른 제스처 인식 성능 비교)

  • 윤호섭;양현승
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.430-443
    • /
    • 2003
  • The objective of this paper is to evaluate most useful feature vector space using the angle, velocity and location features from gesture trajectory which extracted hand regions from consecutive input images and track them by connecting their positions. For this purpose, the gesture tracking algorithm using color and motion information is developed. The recognition module is a HMM model to adaptive time various data. The proposed algorithm was applied to a database containing 4,800 alphabetical handwriting gestures of 20 persons who was asked to draw his/her handwriting gestures five times for each of the 48 characters.

A Robust Fingertip Extraction and Extended CAMSHIFT based Hand Gesture Recognition for Natural Human-like Human-Robot Interaction (강인한 손가락 끝 추출과 확장된 CAMSHIFT 알고리즘을 이용한 자연스러운 Human-Robot Interaction을 위한 손동작 인식)

  • Lee, Lae-Kyoung;An, Su-Yong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.328-336
    • /
    • 2012
  • In this paper, we propose a robust fingertip extraction and extended Continuously Adaptive Mean Shift (CAMSHIFT) based robust hand gesture recognition for natural human-like HRI (Human-Robot Interaction). Firstly, for efficient and rapid hand detection, the hand candidate regions are segmented by the combination with robust $YC_bC_r$ skin color model and haar-like features based adaboost. Using the extracted hand candidate regions, we estimate the palm region and fingertip position from distance transformation based voting and geometrical feature of hands. From the hand orientation and palm center position, we find the optimal fingertip position and its orientation. Then using extended CAMSHIFT, we reliably track the 2D hand gesture trajectory with extracted fingertip. Finally, we applied the conditional density propagation (CONDENSATION) to recognize the pre-defined temporal motion trajectories. Experimental results show that the proposed algorithm not only rapidly extracts the hand region with accurately extracted fingertip and its angle but also robustly tracks the hand under different illumination, size and rotation conditions. Using these results, we successfully recognize the multiple hand gestures.

Finger-Pointing Gesture Analysis for Slide Presentation

  • Harika, Maisevli;Setijadi P, Ary;Hindersah, Hilwadi;Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1225-1235
    • /
    • 2016
  • This paper presents a method for computer-assisted slide presentation using vision-based gesture recognition. The proposed method consists of a sequence of steps, first detecting a hand in the scene of projector beam, then estimating the smooth trajectory of a hand or a pointing finger using Kalman Filter, and finally interfacing to an application system. Additional slide navigation control includes moving back and forth the pages of the presentation. The proposed method is to help speakers for an effective presentation with natural improved interaction with the computer. In particular, the proposed method of using finger pointing is believed to be more effective than using a laser pointer since the hand, the pointing or finger are more visible and thus can better grab the attention of the audience.

Recognizing Hand Digit Gestures Using Stochastic Models

  • Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • A simple efficient method of spotting and recognizing hand gestures in video is presented using a network of hidden Markov models and dynamic programming search algorithm. The description starts from designing a set of isolated trajectory models which are stochastic and robust enough to characterize highly variable patterns like human motion, handwriting, and speech. Those models are interconnected to form a single big network termed a spotting network or a spotter that models a continuous stream of gestures and non-gestures as well. The inference over the model is based on dynamic programming. The proposed model is highly efficient and can readily be extended to a variety of recurrent pattern recognition tasks. The test result without any engineering has shown the potential for practical application. At the end of the paper we add some related experimental result that has been obtained using a different model - dynamic Bayesian network - which is also a type of stochastic model.

  • PDF

Motion Plane Estimation for Real-Time Hand Motion Recognition (실시간 손동작 인식을 위한 동작 평면 추정)

  • Jeong, Seung-Dae;Jang, Kyung-Ho;Jung, Soon-Ki
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.347-358
    • /
    • 2009
  • In this thesis, we develop a vision based hand motion recognition system using a camera with two rotational motors. Existing systems were implemented using a range camera or multiple cameras and have a limited working area. In contrast, we use an uncalibrated camera and get more wide working area by pan-tilt motion. Given an image sequence provided by the pan-tilt camera, color and pattern information are integrated into a tracking system in order to find the 2D position and direction of the hand. With these pose information, we estimate 3D motion plane on which the gesture motion trajectory from approximately forms. The 3D trajectory of the moving finger tip is projected into the motion plane, so that the resolving power of the linear gesture patterns is enhanced. We have tested the proposed approach in terms of the accuracy of trace angle and the dimension of the working volume.

Design of an Arm Gesture Recognition System Using Feature Transformation and Hidden Markov Models (특징 변환과 은닉 마코프 모델을 이용한 팔 제스처 인식 시스템의 설계)

  • Heo, Se-Kyeong;Shin, Ye-Seul;Kim, Hye-Suk;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.723-730
    • /
    • 2013
  • This paper presents the design of an arm gesture recognition system using Kinect sensor. A variety of methods have been proposed for gesture recognition, ranging from the use of Dynamic Time Warping(DTW) to Hidden Markov Models(HMM). Our system learns a unique HMM corresponding to each arm gesture from a set of sequential skeleton data. Whenever the same gesture is performed, the trajectory of each joint captured by Kinect sensor may much differ from the previous, depending on the length and/or the orientation of the subject's arm. In order to obtain the robust performance independent of these conditions, the proposed system executes the feature transformation, in which the feature vectors of joint positions are transformed into those of angles between joints. To improve the computational efficiency for learning and using HMMs, our system also performs the k-means clustering to get one-dimensional integer sequences as inputs for discrete HMMs from high-dimensional real-number observation vectors. The dimension reduction and discretization can help our system use HMMs efficiently to recognize gestures in real-time environments. Finally, we demonstrate the recognition performance of our system through some experiments using two different datasets.