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Abstract

Stroke-based composite HMMs with articulation states are proposed to deal with 3D spatio-temporal trajectory gestures. The
direct use of 3D data provides more naturalness in generating gestures, thereby avoiding some of the constraints usually imposed
to prevent performance degradation when trajectory data are projected into a specific 2D plane. Also, the decomposition of
gestures into more primitive strokes is quite attractive, since reversely concatenating stroke-based HMMs makes it possible to
construct a new set of gesture HMMs without retraining their parameters. Any deterioration in performance arising from
decomposition can be remedied by a partial tuning process for such composite HMMs.
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1. Introduction

The study on recognizing hand gesture has been forwarded
for natural human-computer interaction (HCI). There are two
main methodologies for recognizing hand gestures based on
the gesture input devices used: vision-based recognition and
glove- based recognition [1]. The vision-based approach [2]]3]
provides the most natural and intuitive way of building a HCI
environment. However, this approach has several difficult
problems in relation to the recognition of the 3
spatio-temporal gestures; recognition methods based on 2D
visual images have an inherent limitation in their
discrimination capability, and 3D modeling and analyzing
approaches often encounter substantial difficulties in achieving
real-time processing due to their computational complexity.
The glove-based approach [4, 5] is somewhat unnatural and
restrictive because it requires wearing a glove linked to a
computer. Nevertheless, this approach can be -effectively
applied to certain specific 3D applications requiring precise
teleoperation, for example, the simulation of surgery in a
virtual reality environment [6], as it can easily satisfy the
real-time requirement and produce higher accuracy and
reliability than the vision-based method.

In this paper, we present a glove-based recognition method
for the reliable telecontrol of robots requiring 3D gesture input
in a remote work environment.

We employ the discrete hidden Markov model (HMM) to
recognize the 3D hand trajectory gestures. In order to build an
HMM for each gesture, we propose to use the strokes as the
basic units instead of the gestures themselves. A gesture used
in our experiment can be approximated using a concatenation
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of such strokes. Likewise, a new gesture can also be obtained
by rearranging of some existing strokes. This feature can be
easily implemented with a discrete HMM. Once the stroke
HMMs have been trained for the strokes considered, the
gesture models can then be built by concatenating those stroke
HMMs without retraining their parameters. This feature is
quite useful, since it can improve the extensibility of a
recognition system. However, the drawback of this
stroke-based approach is that it is unable to handle a
coarticulation problem that occurs when two individual strokes
meet each other, thereby causing a degradation of recognition
performance. To overcome this problem, articulation states are
newly added at the joint of two connecting stroke HMMs and
then partial-tuning by which only the joint regions are
selectively trained is carried out.

2. Hand Trajectory Gesture Database and
Feature Extraction

Originally, We define 16 hand trajectory gestures for
remote robot control, as shown in Fig. 1. Also, we adopt
eleven strokes as the basic composition elements which are
found to have describing power enough to construct the 16
defined gestures as well as other gestures of moderate
complexity. In Fig. 1, the strokes shown in the first column
are needed to construct the corresponding gesture denoted in
the third column. A stroke can be a simple hand gesture but
usually two or three strokes constitute a more complex
gesture. Once the stroke HMMs have been trained for the
defined strokes, hand gesture recognition can be accomplished
by identifying a composition of such strokes. This composition
strategy is quite salient, since further gestures can always be
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added based on a simple recombination of the elementary
strokes.
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Fig. 1. Eleven basic strokes and their combinations to build
composite gestures.
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The acquisition of hand gesture is conducted by using two
glove input devices. First, the information of the trajectory of
a hand motion is acquired by a magnetic position tracker,
Polhemus sensor, which can generate a sequence of sampled
3D positions of the hand. The meaningful gesture region
within a hand trajectory is detected by a PinchGlove, which
can signal starting and ending of a gesture by simply touching
two fingers at the appropriate time. In our case, by attaching
the Polhemus sensor to the back of the PinchGlove, gesture
detection and acquisition are performed at the same time [7].

The ensuing step is feature extraction, which will
characterize the hand gesture. Fels and Hinton [S] used several
features to accomplish speech synthesis from their gesture set:
finger flex angles, difference between two consecutive
positions of the hand, velocity and acceleration of a hand
movement, etc. However, since our case considers only the
hand trajectory without any complicated hand shapes, a

simpler feature set is adopted, as detailed below. Let o, be a
difference vector defined as

vi=2() —x(¢t—1) =[x, dy, 42" t=1,2, N

oy

Here o, is the difference between the current position

x(®) and the previous position x(f—1) of the hand and

dx, Ay, and Az are its three spatial components. This
difference vector is invariant to the translational movements of
the whole hand trajectory. Further, to compensate for the

effect of the size or speed of a gesture, w, is normalized by
o). In order for a discrete HMM to be used, the extracted

feature vectors are finally converted into discrete symbols
through a vector quantization procedure.

3. Hidden Markov Model(HMM) Approaches

The hidden Markov model (HMM) [8] has been widely
used as a standard method for recognizing and predicting
spatio-temporal  patterns. An HMM can be expressed
compactly as A=(A,B,n. Here A4 represents the state
transition probability matrix, B the observation symbol
probability matrix, and x the initial state probability vector.
These parameters have been estimated using the Baum-Welch
algorithm. Similarly, the Viterbi algorithm is typically used to
evaluate the trained HMM at the time of recognition.

We use the simple left-to-right discrete HMM to model a
stroke, an example of which is shown in Fig. 2(a).
Non-emitting entry and exit states are provided to make it
easy to join stroke models together. In case of composite
HMM, two or three relevant stroke HMMs are concatenated
by merging the exit state of one stroke model with the entry
state of another to form a gesture model, as described in Fig.
2(b). One major problem in such a composition of
stroke-based HMMs is that it cannot cope with coarticulation
between touching strokes, thereby resulting in a degradation of
the recognition performance.

It is well known that coarticulation is also one of the main
causes of error in continuous speech recognition and on-line
handwriting recognition. Various methods have been suggested
to surmount this problem, including context-dependent triphone
modeling [9), word juncture modeling based on phonological
rules [10], and ligature modeling [11]. Among these
approaches, ligature modeling by which the inter-stroke
connecting patterns are explicitly modeled as separate entities
just like strokes can be considered as one of the proper
methods to be potentially applicable to our case. However,
this method requires excessively high cost of modeling and
segmenting the strokes and inter-stroke patterns, and
connecting them in a training stage.

As an alternative method, we propose a partially tuned
composite HMM with articulation states. As shown in Fig.
2(c), articulation states are newly added into the joint region
between the adjacent stroke HMMSs. Then these joint regions
are selectively trained to handle the stroke boundaries
producing a coarticulation problem using a gesture database,
while other parts remain unchanged, assuming that the
parameter sets of the HMMs modeling each stroke region are
already well estimated from the initial learning. The proposed
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method is quite attractive, since it can easily solve the
coarticulation problem only with a slight burden of relearning.
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Fig. 3. Several examples of real trajectory gestures displayed
in 3D space

Table 1. Recognition rates of two types of HMMs against a
testing database

Joint region

(©)
Fig. 2. Structure of left-to-right HMM. (a) Standard HMM. (b)
Composite HMM. (¢) Composite HMM with articulation
states.

4. Experimental Results

In recognition experiments on 16 gestures, we first
construct two types of HMMs for each gesture according to
the basic units to be modeled: gesture- based HMM and
stroke-based composite HMM. In the gesture-based modeling,
one of three different numbers of states is assigned to each
gesture HMM according to how complex a gesture is. The
complexity of a gesture is roughly estimated by its possible
decomposition into strokes as described in Fig. 1. These
gesture-based HMMs are constructed using a training database
compiled from five persons who generated each gesture five
times. In stroke-based approach, an initial training procedure
to build each stroke HMM should be preceded. As a training
database, a total of 275 strokes were gathered for 11 stroke
types from five persons. Then the composite HMMs for the
originally defined gestures are created by simply concatenating
two or three relevant stroke HMMs.

As a testing database for evaluation, 1440 samples for 16
gesture types were obtained from nine persons, each producing
10 samples for each type naturally without any constraints on
the speed or size of a gesture. Several examples of real
trajectory gestures are shown in Fig. 3. As expected, we can
see considerable 3D shape variations due to the unconstrained
generating style.
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HMM models structure # errors recognition
rate (%)
7,14, or 21 states 81 94,38
8,16, or 24 states 66 95.42
G"Stﬂuﬁ'l\b:“d 9,18, or 27 states | 56 96.11
10,20, or 30 states 56 96.11
11,22, or 33 states 67 95.35
7,14, or 21 states 93 93.54
8,16, or 24 states 83 94.24
cosmt“:;et'eba:;iM 9,18, or 27 states | 75 94.79
p 10,20, or 30 states | 88 93.89
11,22, or 33 states 90 93.75

The results in Table 1 show that the gesture-based HMM
with 9, 18, or 27 states and composite HMM with 9, 18, or
27 states (nine states per each stroke) performed best with
their recognition rates of 96.11% and 94.79%, respectively. As
expected, the overall performance of the stroke-based
modeling is about 1% - 2% worse than that of the gesture-
based modeling. We investigated more thoroughly why the
recognition rate of stroke-based HMM is lower than those of
conventional types of HMMs through the error analysis of the
individual gesture class.

Table 2 shows a confusion matrix for the stroke- based
composite HMM with 9,18, or 27 states. Each row comprises
the results for the given testing data set of one gesture class;
the columns correspond to the difference classification
decisions. It can be seen that the recognition rates for the
gesture DS;D, LRD, and C,C,C; are significantly lower than
those for other gestures. The examination of the recognition
errors for these gestures shows that gesture LRD is
misclassified as C,CC;, DS|D as S;US; or CC.C), and
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Table 2. Confusion matrix for stroke-based HMM with 9,18, or 27 states.
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CiC,Cy as C3Cs. These gestures have a common feature that
they are composed of the composition of three strokes, as
shown in Fig. 1. Therefore, we can find that the coarticulation
problem causes the degradation of recognition performance
when two or three stroke models are concatenated to build a
gesture model.

Next, we deal with the partially tuned composite HMM,
which is proposed to solve the coarticulation problem. The
joint region where the articulation states are newly added is
selectively trained using the same training database adopted to
build the gesture-based HMMs. It can be seen from Table 3
that the best performance of a 95.90% recognition rate was
achieved when the two or three states are added into the joint
regions of the composite HMM with 7, 14, or 21 states. This
performance is found to be comparable to that of the
best-performing gesture-based HMM. Thus, we can conclude
that a partially tuned composite HMM can be an effective
scheme for recognizing a 3D trajectory of a hand gesture
when a large gesture set is used or unexpected gestures need
to be included later.

Table 3. Recognition rates of partially tuned composite HMM
relative to number of articulation states.

Articulation states # errors Recognition rate (%)
1 state added 73 94.93
2 states added 59 95.90
3 states added 59 95.90
4 states added 63 95.63

Table 4 shows the details of recognition results for the
partially tuned composite HMM in the form of a confusion
matrix. As in the previous recognition experiment based on
the simple stroke-based composite HMM, the case for the
most frequent errors was that the gesture C,C;C, are
misclassified as C;C; and DS|D as RS3;R or S;S;. However,
notice that average recognition rate for the gestures combined
with - three strokes was remarkably increased when compared
to the results of Table 2. Such results demonstrate that
partially tuned composite HMM by selective training for the
parameters of articulation states can effectively reduce the
recognition errors mainly caused by coarticulation

Table 4. Confusion matrix for partially tuned composite HMM (7, 14, or 21 states) with two articulation states.

L R U D |UD | DU | LD | DL | LRD | DRL | DS:D | RS:R { S:USy | CiCa | 818, [ CicaCy R::’eg'(‘f,z;’"

L 88 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 97.78
R 0 | 9% | © 0 0 0 0 0 0 0 0 0 0 0 0 0 100.00
6] 0 0 85 0 4 0 0 0 0 0 0 0 0 1 0 0 94.44

D 0 1 0o | 8 | o 2 0 2 0 0 0 0 0 0 2 0 92.22
uD 0 0 0 0 88 0 0 0 0 0 0 0 0 0 2 0 97.78
DU 0 0 0 1 0 | 88 | o 0 0 0 0 0 0 1 0 0 97.78
LD 0 0 0 0 0 0 86 0 0 0 0 0 0 0 4 0 95.56
DL 0 0 0 0 0 0 0 84 0 0 0 0 0 6 0 0 93.33
LRD 0 0 0 0 0 0 0 0 85 0 0 0 0 0 5 0 94.44
DRL 0 1 0 0 0 0 0 0 0 88 0 1 0 0 0 0 97.78
psD | O 0 0 0 0 0 0 0 0 0 80 0 5 0 4 1 88.89
RS3;R 0 0 0 0 0 0 0 0 0 0 0 89 0 1 0 0 98.89
S2US; 0 0 0 0 0 0 0 0 0 0 1 0 87 0 0 2 96.67
CiCs 0 0 0 0 0 1 0 0 0 0 0 0 0 89 | 0 0 98.89
$:8, 0 0 0 0 1 0 0 0 0 0 0 0 0 0 89 0 98.89
Ci1CCy 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 82 91.11
L 95.90
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5. Conclusions

A 3D hand trajectory gesture recognition system was
implemented using a stroke-based composite HMM. Gesture
models are built by concatenating two or three relevant stroke
HMMs. Articulation states along with partial tuning are used
in jointing the HMMs to solve the problem of coarticulation
between two touching strokes. Through a series of experiments
on recognizing 16 hand gestures, it was found that partially
tuned composite HMM exhibited a recognition performance
comparable to that of conventional gesture-based HMM.
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