• Title/Summary/Keyword: geothermal energy resources

Search Result 82, Processing Time 0.034 seconds

Status and Outlook of World Geothermal Energy Utilization (세계 지열에너지 활용 현황 및 전망)

  • Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.669-673
    • /
    • 2005
  • World geothermal resources potential is estimated to supply 189 EJ annually, which can take charge approximately a half of annual world energy consumpt ion, from considering identified resources and supplies in USA and Iceland. Present annual use of geothermal energy, on the other hand, is only $0.1\%$ of its potential, but still has $70\%$ share among total new renewables. World-wide installed capacity of geothermal power generation reaches 8,900 MWe and 27,825 MWt for direct uses in 2005 which is almost two-fold increase over 2000. This increase is mainly due to exploding expansion of geothermal heat pump utilization: USA and western European countries lead these trends. Although geothermal heat pump distribution in Korea is still in its starting phase, comparing to Swiss achievement in terms of areal utilization sense, we expect to come up with national supply of over 600,000 toe in near future.

  • PDF

Monitoring of Subsurface Temperature Variation as Geothermal Utilization (지종열 활용에 따른 온도변화 모니터링)

  • Lee, Tae-Jong;Shim, Byoung-Ohan;Song, Yoon-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • Long-term temperature monitoring has been performed for ground heat exchanger at the Earthquake Research Center (ERC) building in Korea Institute of Geoscience and Mineral Resources (KIGAM). For the 3 years of monitoring, overall temperature increases are observed at various depths within a borehole heat exchanger. But monitoring of ground temperature variation at the monitoring well beforehand showed that geothermal utilization is not the only source for the temperature increase, Because various kinds of sources can cause the ground temperature change, more thorough investigation should be followed.

International Organizations of Geothermal Energy Resources;IGA and IEA-GIA (지열에너지자원분야 국제기구;IGA와 IEA-GIA)

  • Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.441-444
    • /
    • 2007
  • International Geothermal Association (IGA) and Geothermal Implementing Agreement (GIA) under Committee on Energy Research & Technology (CERT) of International Energy Agency (IEA) are the two major international organizations leading geothermal research, development and deployment (RD&D). IGA has been established in 1988 by geothermal societies in Europe and America and presently consists of 23 affiliated societies. Current number of members of IGA reaches 2,000 from 65 countries and its most important activity may be to organize the World Geothermal Congress (WGC) every five years. IEA-GIA has been established in 1993 and its executive committee (ExCo) consists of 11 countries, 1 organization (EC) and 3 sponsor companies. Korea became a member of ExCo on September 2005 through Korea Institute of Geoscience & Mineral Resources (KIGAM) as representative. KIGAM is also actively participating in Direct Use Annex through a task leader of several tasks.

  • PDF

Status and Outlook of Geothermal Energy Exploitation Technologies (지열에너지자원 개발, 활용 기술의 동향 및 전망)

  • Song, Yoon-Ho;Lee, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.20-23
    • /
    • 2006
  • Geothermal energy is the natural heat of the Earth. Enormous amounts of thermal energy are continuously generated by the decay of radioactive isotopes of underground rocks and stored in the Earth's interior. Therefore, geothermal energy is one of the most important sustainable energy resources. Recent trends of geothermal energy exploitation technologies focus on the Earth scientific approach to geothermal heat pump system, enhanced geothermal system, aquifer thermal energy storage, underground thermal energy storage, and fluid/heat flow model ing for geothermal wells. Geothermal heat pump distribution in Korea is still in its starting phase in terms of areal utilization sense, we, however, expect to come up with national supply of over 1,000,000 toe by 2020

  • PDF

A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring (다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구)

  • Jung, Woo-Sung;Kim, Hyoung-Soo;Park, Dong-Soon;Ahn, Young-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF

Geothermal Research and Development in Korea (한국의 지열 연구와 개발)

  • Song, Yoon-Ho;Kim, Hyoung-Chan;Lee, Sang-Kyu
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.485-494
    • /
    • 2006
  • This paper summarizes the history of geothermal research in Korea since 1920s and also describes the present status of research on heat flow, origin of thermal waters and geothermal exploitation and utilization. Geothermal research in Korea has been mainly related with hot spring investigation until 1970s. 1t was not until 1980s before heat flow study became continuous by research institute and academia and first nation-scale geothermal gradient map and heat flow map were published in 1996. Also in 1990s, geochemical isotope analysis of Korean hot spring waters and measurements of heat production rate of some granite bodies were made. Attempts to develop and utilize the deep geothermal water has been tried from early 1990s but field scale exploitations for geothermal water was activated in 2000s. Considering recent increase of demands on both deep and shallow geothermal energy utilization, outlook on future goethermal research and development is encouraging.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

Energy and Exergy Analysis of Maeeum-Ri Geothermal District Heating System (지열을 이용한 매음리 지역난방에 관한 에너지 및 엑서지 분석)

  • Kim, Jin-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • This study describes energy and exergy analysis of the Maeeum-Ri Geothermal District Heating System(MGDHS) of Ganghwa Island, Incheon, Korea. Design data are used to assess the performance of the geothermal district heating system. Geothermal resources of MGDHS are found to be low quality with specific exergy index of 0.029. Exergy losses occur in the pumps and heat exchangers as well as in the geothermal Quid and direct discharge. As a result, the total exergy losses accounts for 5.2% in pumps, 47% in the discharge, and 3.3% in heat exchanger based on the total exergy input to the entire MGDHS. The overall energy and exergy efficiencies of the system are found to be 28.8% and 44.5%, respectively.

  • PDF

Risk Management and Governmental Investment on New & Renewable Energy (Risk Management 관점에서 신재생에너지 투자)

  • Ahn, Eun-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.360-363
    • /
    • 2006
  • Regester & Larkin(2005) suggest the issue and risk lifecycle analysis method in risk management, made up of the potential, emerging, current, crisis, and dormant stages. Investment on New & Renewable Energy is meaningful in effect ive risk management for diminishing or reducing the shock of a energy current, at the potential stage. In this study, we survey the risk of traditional fossil fuel projects and develop the risk analysis model for new & renewable energy projects specially geothermal energy resources and gas-hydrate resources.

  • PDF

Thermal conductivity of rocks for geothermal energy utilization (지열에너지 활용을 위한 암석의 열전도도 고찰)

  • Lee, Young-Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • Thermal conductivity of rocks is one of the most important parameters in designing a geothermal heat pump system, because heat exchange rate depends primarily on thermal conductivity of rocks. In this paper, the measurement methods of thermal conductivity, thermal conductivity of rocks, and heat exchange rate are discussed.

  • PDF