• 제목/요약/키워드: geotechnical parameters

검색결과 750건 처리시간 0.028초

컴퓨터 프로그램을 이용한 기초보강용 그물식 뿌리말뚝의 거동 분석 (Analysis on the Behavior of Reticulated Root Piles for Reinforcing Footing using Computer Program)

  • 박영호;변광욱
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.348-361
    • /
    • 1991
  • 사질토 지반위에 놓인 띠기초에 뿌리말뚝을 사용하여 지반 보강할 때, 보강효과는 말뚝의 길이와 개수, 단면적, 근입 각도, 배치 간격, 탄성 계수, 흙과 말뚝과의 마찰계수 등에 영향을 받는다. 흙에서의 보강재의 작용은 인장력을 받는 것이 아니라 한 방향의 법선 병형률 속도를 감소시키거나 억제하는 것이다. R. H. Bassett와 N. C. Last는 속도특성곡선에서 변형률 속도가 인장이 되는 최소 주변형률 속도방향을 따라 보강재를 배치하는 것이 효과적이라고 하였다. 이 제안을 토대로 말뚝의 길이와 개수, 단면적, 근입각도, 배치 간격, 탄성계수 등을 변화시켜가며 2차원 유한요소해석을 실시하였다.

  • PDF

Probabilistic sensitivity analysis of multi-span highway bridges

  • Bayat, M.;Daneshjoo, F.;Nistico, N.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.237-262
    • /
    • 2015
  • In this study, we try to compare different intensity measures for evaluating nonlinear response of bridge structure. This paper presents seismic analytic fragility of a three-span concrete girder highway bridge. A complete detail of bridge modeling parameters and also its verification has been presented. Fragility function considers the relationship of intensities of the ground motion and probability of exceeding certain state of damage. Incremental dynamic analysis (IDA) has been subjected to the bridge from medium to strong ground motions. A suite of 20 earthquake ground motions with different range of PGAs are used in nonlinear dynamic analysis of the bridge. Complete sensitive analyses have been done on the response of bridge and also efficiency and practically of them are studied to obtain a proficient intensity measure for these types of structure by considering its sensitivity to the period of the bridge. Three dimensional finite element (FE) model of the bridge is developed and analyzed. The numerical results show that the bridge response is very sensitive to the earthquake ground motions when PGA and Sa (Ti, 5%) are used as intensity measure (IM) and also indicated that the failure probability of the bridge system is dominated by the bridge piers.

인천대교 민자구간의 대구경 현장타설 말뚝기초의 LRFD 설계 적용 사례 (Design of Drilled Shafts Foundation by LRFD in Incheon Bridge Project)

  • 김정환;이현근;신현양;윤만근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.551-561
    • /
    • 2006
  • Incheon bridge project is to construct total 12km long bridges on the sea consist of 800m span length cable stayed bridge, approach bridge and viaduct bridge based on LRFD design specification. To design pile foundations by RCD of each bridge unit, total 4 number of preliminary full scale pile load tests with Osterberg cell method were carried out on the piles for testing. The test load was planned to more than the expected design ultimate capacity and about 29,000tons maximum load was recorded. From the interpretation of test results, design parameters are evaluated and applied to the design. Preliminary pile load test plan and detailed execution of pile load tests are introduced and summarized. The resistance factors are presented for pile design of Incheon Bridge Project in LRFD considering variation of ground conditions and number of test piles.

  • PDF

주파수영역 스펙트럼 반응을 이용한 불포화토의 염분농도 측정에 관한 연구 (Spectrum response of frequency range for the unsaturated soil by salinity concentration)

  • 김만일;정교철;김형수;석희준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.389-394
    • /
    • 2005
  • In this study we carried out to evaluate the salinity concentration and volumetric water content of unsaturated soil column using frequency domain Reflectometry with vector network analyzer (FDR-V) measurement system. All of experiments were considered to the effect of temperature which ranges from l0$^{\circ}C$ to 50$^{\circ}C$ increasing the interval of l0$^{\circ}C$ controlled by the constant temperature container. From the results the responses of complex dielectric constant which consist of the real part and imaginary parts have the effect of volumetric water content and concentration of salinity at 1GHz. Use of derived equations (1) and (2) can be calculated the physical parameters such as volumetric water content and salinity concentration of unsaturated media by the responses of complex dielectric constant.

  • PDF

모래지반에 매입된 날개없는 석션앵커의 인발력에 대한 원심모형실험 (Centrifuge Model Tests on the Pullout Capacity of Embedded Suction Anchor without Flanges in Sand layer)

  • 김경오;김유석;고부현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.517-520
    • /
    • 2005
  • The embedded suction anchor(ESA) is and anchor that is driven by a suction pile. The cross-sectional shape of the ESA anchor is circle. Its diameter is the same as that of the suction pile that is used to drive it into the seafloor. For the installation, the anchor is attached to the tip of the suction pile and then driven as a unit with the pile by and applied suction pressure. Once the ESA anchor reaches the desired depth, the pile is retrieved by applying a positive pressure. Finally, only the ESA anchor remains in the soil layer. This paper presents the results of centrifuge model tests to investigate ESA pullout capacity. The main parameters that have effects on the pullout capacity of ESA may include g-level, embedded depth, direction of loading, and loading point. The results of tests show that the pullout loading capacities increase as the loading point shift toward the tip of the anchors for a given loading direction. They also indicate that the loading point associated with the maximum pullout loading capacity is located at approximately 67 percent of the anchor length from the top for the horizontal load.

  • PDF

셀 구조물의 항복하중에 미치는 체적의 영향 (The Effect of the Volume of the Cellular Bulkhead on the Yield Load)

  • 장정욱;김현국;이재석
    • 한국해안·해양공학회논문집
    • /
    • 제27권4호
    • /
    • pp.197-201
    • /
    • 2015
  • 본 연구에서는 셀 구조물의 체적과 항복하중과의 상관관계를 규명하기 위하여 실내실험 및 수치해석을 수행하였다. 실험과 해석 결과 산출된 항복하중 값은 양호한 상관관계를 보였으며, 항복하중 값의 산출에 있어서 본 연구에서 수행한 유한요소 해석 기법은 타당한 것으로 검증되었다. 유한요소해석 결과, 셀 구조물의 체적 증가에 따라 항복하중은 증가되었으며 항복하중은 체적 증가비율만큼 증가하는 것으로 나타났다.

Partitioned analysis of nonlinear soil-structure interaction using iterative coupling

  • Jahromi, H. Zolghadr;Izzuddin, B.A.;Zdravkovic, L.
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.33-51
    • /
    • 2008
  • This paper investigates the modelling of coupled soil-structure interaction problems by domain decomposition techniques. It is assumed that the soil-structure system is physically partitioned into soil and structure subdomains, which are independently modelled. Coupling of the separately modelled partitioned subdomains is undertaken with various algorithms based on the sequential iterative Dirichlet-Neumann sub-structuring method, which ensures compatibility and equilibrium at the interface boundaries of the subdomains. A number of mathematical and computational characteristics of the coupling algorithms, including the convergence conditions and choice of algorithmic parameters leading to enhanced convergence of the iterative method, are discussed. Based on the presented coupling algorithms a simulation environment, utilizing discipline-oriented solvers for nonlinear structural and geotechnical analysis, is developed which is used here to demonstrate the performance characteristics and benefits of various algorithms. Finally, the developed tool is used in a case study involving nonlinear soil-structure interaction analysis between a plane frame and soil subjected to ground excavation. This study highlights the relative performance of the various considered coupling algorithms in modelling real soil-structure interaction problems, in which nonlinearity arises in both the structure and the soil, and leads to important conclusions regarding their adequacy for such problems as well as the prospects for further enhancements.

Taming of large diameter triaxial setup

  • Nair, Asha M.;Madhavi Latha, G.
    • Geomechanics and Engineering
    • /
    • 제4권4호
    • /
    • pp.251-262
    • /
    • 2012
  • Triaxial tests are essential to estimate the shear strength properties of the soil or rock. Normally triaxial tests are carried out on samples of 38 mm diameter and 76 mm height. Granular materials, predominantly used in base/sub-base construction of pavements or in railways have size range of 60-75 mm. Determination of shear strength parameters of those materials can be made possible only through triaxial tests on large diameter samples. This paper describes a large diameter cyclic triaxial testing facility set up in the Geotechnical Engineering lab of Indian Institute of Science. This setup consists of 100 kN capacity dynamic loading frame, which facilitates testing of samples of up to 300 mm diameter and 600 mm height. The loading ram can be actuated up to a maximum frequency of 10 Hz, with maximum amplitude of 100 mm. The setup is capable of carrying out static as well as dynamic triaxial tests under isotropic, anisotropic conditions with a maximum confining pressure of 1 MPa. Working with this setup is a difficult task because of the size of the sample. In this paper, a detailed discussion on the various problems encountered during the initial testing using the equipment, the ideas and solutions adopted to solve them are presented. Pilot experiments on granular sub-base material of 53 mm down size are also presented.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

Prediction of the load-displacement response of ground anchors via the load-transfer method

  • Chalmovsky, Juraj;Mica, Lumir
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.359-370
    • /
    • 2020
  • Prestressed ground anchors are important structural elements in geotechnical engineering. Despite their widespread usage, the design process is often significantly simplified. One of the major drawbacks of commonly used design methods is the assumption that skin friction is mobilized uniformly along an anchor's fixed length, one consequence of which is that a progressive failure phenomenon is neglected. The following paper introduces an alternative design approach - a computer algorithm employing the load-transfer method. The method is modified for the analysis of anchors and combined with a procedure for the derivation of load-transfer functions based on commonly available laboratory tests. The load-transfer function is divided into a pre-failure (hardening) and a post-failure (softening) segment. In this way, an aspect of non-linear stress-strain soil behavior is incorporated into the algorithm. The influence of post-grouting in terms of radial stress update, diameter enlargement, and grout consolidation is included. The axial stiffness of the anchor body is not held constant. Instead, it gradually decreases as a direct consequence of tensile cracks spreading in the grout material. An analysis of the program's operation is performed via a series of parametric studies in which the influence of governing parameters is investigated. Finally, two case studies concerning three investigation anchor load tests are presented.