• Title/Summary/Keyword: geotechnical monitoring

Search Result 363, Processing Time 0.03 seconds

In-situ Monitoring of Matric Suctions in a Weathered Soil Slope (풍화토 사면에서 강우로 인한 간극수압 변화에 대한 실험연구)

  • 이인모;조우성;김영욱;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Rainfall-induced landslides in a weathered granite soil slope usually happen on shallow slip surfaces above the groundwater table. The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure (or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time elapse in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 in order to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. Finite-element transient seepage analyses are also conducted using SEEP/W. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with the change of depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

Suggestion of a Design Method for UAM (강관 다단 그라우팅 공법(UAM)의 설계법 제안)

  • 박이근;임종철
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.97-106
    • /
    • 2004
  • In case of tunnel construction with a shallow soil cover in cohesionless soils or highly weathered rocks, reinforcement measures are required for a tunnel stability during the tunnel construction. Recent developments show that the use of Umbrella Arch Method(UAM) as tunnel reinforcement and water cut-off in domestic projects has increased. Unfortunately, guidelines for the design and construction of UAM have not been established, only empirical designs and applications in tunnel construction have been performed so far. In this study, behaviour of the steel pipes installed on the tunnel roof was analyzed through the monitoring of bending and axial stresses of the pipes with the advance of the tunnel face. The monitoring results were used in the establishment of the loading mechanism around the pipe. This paper suggests, the guidelines used in the determination of the total length, overlapping length and lateral spacing of the reinforcing pipes obtained from the established loading mechanism.

Development and Calibration of 3-Component Vibration Transducer (3방향 진동감지기의 제작 및 검증)

  • Kim, Dong-Su;Lee, Jin-Seon;Jo, Seong-Ho
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.121-134
    • /
    • 1997
  • Vibrations induced by traffic loading and construction activities are extremely important due to their potential to cause damage to adjacent structures and toy complaints to the neighbors. Vibration induced damage to the built environment may be caused by the direct transmission of vibrations as well as by the, vibration induced differential settlement. In order to effectively control the vibration related problems, the accurate in-situ vibration monitoring is essential. In this paper, a calibration technique of a geophone which is widely used in practice was described. Once the frequency characteristics of individual geophones were calibrated, the 3fomponent geophone was developed for the in-depth vibration measurement, and the dot ailed calibration and application techniques of the 3fomponent geophone were described. Vibrations caused by blasting, train loading, and pile driving were measured and the applicability of the 3fomponent geophone was assessed.

  • PDF

An Experimental Study on Characteristics of Earth Pressure Distribution for Segmental Reinforced Earth Wall (블록형 보강토 옹벽의 토압 특성 연구)

  • 김진만;조삼덕;이정재;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Retaining walls with reinforced earth have been constructed around the world. The use of reinforced earth is a recent development in the design and construction of earth-retaining structure. It is believed that reinforced retaining wall has some advantages which make construction quite simple basically. It wilt take short construction time relatively, comparing, fur example with reinforced-concrete retaining wall. In addition, low price and easy construction will be good attractive points in practical point of view. In this study, five field-tests monitoring data for lateral pressures on geogrid-reinforced retaining wall have been compiled and evaluated. Based on field-tests it is found that horizontal displacements of the facing was measured to be about 0.19∼0.76% and that the maximum tensile strains of reinforcement was evaluated to be about 0.66∼1.98%. The maximum tensile strains, measured from each site, do not reach 5% of the practical allowable strain of the geogrid. And also it is found that the lateral pressure distributions of reinforced-earth retaining wall are close to a trapezoid shape like a flexible retaining wall system, instead of a theoretical triangular shape.

Analysis of Electrical Resistivity Change in Piping Simulation of a Fill Dam (필댐의 파이핑 재현시험시 전기비저항 변화 분석)

  • Ahn, Hee-Bok;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.59-68
    • /
    • 2010
  • Piping, a common form of internal embankment erosion, is caused by progressive movement of soil particles through an embankment. The phenomenon commonly occurs with precursory signs of development of fractures in dam structures, but also occurs without any noticeable signs in dams that showed satisfactory dam performance for several years, due to dissolution of soluble material in an embankment. While piping accounts for nearly 50% of the causes for dam failure, few studies have been made for systematic evaluation of the phenomenon. In this study, we attempted to monitor the changes in electrical resistivities of fill-dam material while a saddle dam is dismantled for the construction of emergency spillways of Daechung dam. Two artificial subhorizontal boreholes were drilled into the embankment structure to simulate piping along the two artificial flow channels. Monitoring of changes in electrical resistivity showed an increase in resistivity values during piping. Thus, the investigation of resistivity over time could be an effective method for piping prediction.

Long-term Behavior of Earth Pressure on Integral Abutments (일체식 교대의 장기토압 거동)

  • Nam, Moon-S.;Park, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.47-58
    • /
    • 2007
  • The usage of Integral abutment bridges has been increased worldwide because of reducing bridge maintenance costs and resisting seismic loads. Although these attributes make the integral abutment bridge an increasingly popular choice, back-abutment interaction issues remain unresolved. Hence, the earth pressure behavior of an integral abutment bridge having 90 m long PSC beam bridge for the first time in Korea was analyzed by conducting long term monitoring in this study. Based on this study, the results were as follows; the ratio of maximum passive movement to the abutment height (H) of 0.0027 and the maximum passive earth pressure coefficient of 4.8 were developed at 0.82H from the bottom of the abutment during summer season. During winter season, the ratio of maximum active movement to H of 0.0011 and the maximum active earth pressure coefficient of 0.7 were developed at the same location as in summer season. The new earth pressure distributions having a trapezoid type were proposed based on this study.

Field Study on Wireless Remote Sensing for Stability Monitoring of Large Circular Steel Pipe for Marine Bridge Foundation (해상 교량기초용 대형 원형강관 가설공법의 무선 원격 안정성 모니터링을 위한 현장실험)

  • Park, Min-Chul;Lee, Jong-Sub;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.71-81
    • /
    • 2020
  • The large circular steel pipe for a marine bridge foundation has been developed as a construction method capable of performing the role of the working platform and cofferdam. The objective of this study is to demonstrate the wireless remote sensing system for monitoring the stability of the large circular steel pipe during construction and operation through field tests. The artificial seabed ground with an water level of 4 m is constructed for field tests. The large circular steel pipe with a diameter of 5 m and height of 9.5 m is installed into the ground by suction, and the embedded depth is 5 m. The inclinometer and strain gauges are installed on different surfaces of the upper module, and the tilt angle and stress are monitored throughout the entire construction process. As results, tilt angles are measured to be constant during the suction penetration. However, the tilt angle is larger in the x-axis direction. In addition, even when installed on different surfaces, the tilt angle in the same axial direction is measured to be almost the same. The stresses measured by strain gauges increase during suction penetration and decrease during pull-out. Based on measured stresses, it is found that the eccentricity is acting on the large circular steel pipe. This study shows that a wireless remote sensing system built with an inclinometer and strain gauge can be a useful tool for the stability monitoring of the large circular steel pipe.

An Analysis on the Lateral Displacement of Earth Retaining Structures Using Fractal Theory (플랙탈 이론을 이용한 흙막이 벽체 수평변위 분석)

  • Lee, Chang-No;Jung, Kyoung-Sik;Koh, Hyung-Seon;Park, Heon-Sang;Lee, Seok-Won;Yu, Chan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.19-29
    • /
    • 2015
  • Nowadays, the importance of the information management of construction sites to achieve the goal of safety construction. This management uses the collaborated analysis of in-situ monitoring data and numerical analysis, especially of an earth retaining structures of excavation sites. In this paper, the fractal theory was applied to actually monitored data from various excavation sites to develop the alternative interpolation technique which could predict the displacement behavior of unknown location around the monitoring locations and the future behavior of the monitoring locations with the steps of excavation. Data, mainly from inclinometer, were collected from various sites where retaining structures were collapsed during construction period, as well as from normal sites with the characteristics of geology, excavation method etc. In the analyses, Hurst exponent (H) was estimated with monitored periods using the Rescaled range analysis (R/S analysis) method applying the H in simulation processes. As the results of the analyses, Hurst exponents were ranged from 0.7 to 0.9 and showed the positive correlation of H > 1/2. The simulation processes, then, with the Hurst exponent estimated by Rescaled range analysis method showed reliable results. In addition, it was also expected that the variation of Hurst exponents with the monitoring period could instruct the abnormal behavior of an earth retaining structures to directors or operators. Therefore it was concluded that fractal theory could be applied for predicting the lateral displacement of unknown location and the future behavior of an earth retaining structures to manage the safety of construction sites during excavation period.

Rock Slope Monitoring using Acoustic Emission (미소파괴음을 이용한 절토사면계측)

  • Jang, Hyun-Ick;Kim, Jin-Kwang;Kim, Chan-Woo;Kim, Kyung-Suk;Cheon, Dae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.743-748
    • /
    • 2010
  • The stability forecasting of rock slope is more difficult than soil slope because catching the sign of failure in monitoring is not easy and deformation of the rock is small in failure process. But in the rock slope, there is small deformation like crack propagation in rock itself and it accumulates gradually in failure process. If it is possible to detect the small change in the rock slope, we can know the failure time exactly. Because the individual signal is gathered in the acoustic emission monitoring, it is possible to monitoring the slope if many sound signal is accumulated. Detection test of acoustic emission was performed. Uniaxial, two types of bending test, and two plane shear test were done with various cement paste sample. Wave propagation velocity of uniaxial test sample was increased with curing time. Wave Analysis give us the result that there is a AE sign signal before the failure, the AE count is suddenly increased. And frequency level 125kHz before failure is changed to level 200-250kHz after failure. In two plane shear test we can catch the AE signal and can know the failure type from wave shape. Monitoring test site is tunnel slope in Hongcheon but special signal is not collected.

  • PDF

A Study on the Application Method of Mechanochromic Sensor for Crack Monitoring in Buildings (건축물 균열 모니터링을 위한 역학변색센서 활용 기법에 관한 연구)

  • Choe, Gyeong-Chol;Kim, Hong-Seop;Jeon, Jun-Seo;Lee, Mun-Hwan;Pyeon, Su-Jeong;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.69-79
    • /
    • 2023
  • In this study, an experimental study was conducted on the development of crack monitoring technology in buildings using a mechanochromic sensor. After attaching a mechanochromic sensor to the cracks induced in the concrete specimen, the color variation image of the sensor according to the progress of the cracks was taken. In addition, a method of analyzing a sensor color variation image was proposed, and an equation for deriving a crack's width from the relationship between the analysis result and the crack width was also proposed. In addition, the possibility of using an mechanochromic sensor for monitoring cracks in buildings was confirmed through the verification of crack width monitoring technology.