DOI QR코드

DOI QR Code

Analysis of Electrical Resistivity Change in Piping Simulation of a Fill Dam

필댐의 파이핑 재현시험시 전기비저항 변화 분석

  • Ahn, Hee-Bok (Management & Construction, Korea Water Resources Corporation) ;
  • Lim, Heui-Dae (Dept. of Civil Engrg., Chungnam National Univ.)
  • Received : 2010.04.01
  • Accepted : 2010.04.26
  • Published : 2010.04.30

Abstract

Piping, a common form of internal embankment erosion, is caused by progressive movement of soil particles through an embankment. The phenomenon commonly occurs with precursory signs of development of fractures in dam structures, but also occurs without any noticeable signs in dams that showed satisfactory dam performance for several years, due to dissolution of soluble material in an embankment. While piping accounts for nearly 50% of the causes for dam failure, few studies have been made for systematic evaluation of the phenomenon. In this study, we attempted to monitor the changes in electrical resistivities of fill-dam material while a saddle dam is dismantled for the construction of emergency spillways of Daechung dam. Two artificial subhorizontal boreholes were drilled into the embankment structure to simulate piping along the two artificial flow channels. Monitoring of changes in electrical resistivity showed an increase in resistivity values during piping. Thus, the investigation of resistivity over time could be an effective method for piping prediction.

파이핑은 제체 내부 침식의 한 형태로서 토립자의 진행성 유출에 기인하며 균열이 발생한 댐 뿐만 아니라 용해성 재료로 인하여 수년 동안 만족스런 거동을 보인 댐들에서도 발생한다. 파이핑 현상은 필댐의 붕괴 원인의 약 50%를 차지하고 있으며 필댐 관리의 주요항목이나, 이에 대한 체계적인 평가에는 다소 어려움이 있다. 이에 본 연구에서는 파이핑 현상에 대한 비파괴 탐지를 위한 전기비저항 탐사기법의 적용성을 파악하기 위해 대청댐 비상여수로 건설을 위해 해체되는 부댐에 파이핑 모사시험과 전기비저항 모니터링을 수행하였다. 제체에 수평공을 천공하여 인공적인 유로를 만들고 저수지 물을 유입시켜 실규모 파이핑 현상을 모사하였으며, 파이핑 현상 모사 시험전과 시험 중 측정한 전기비저항값을 비교한 결과 파이핑 발생 시 측정한 전기비저항값이 조금 더 큰 변화를 보임으로써 전기비저항 모니터링 탐사는 실제 담수되어 있는 제체의 파이핑 현상을 효과적으로 탐지할 수 있을 것으로 판단된다.

Keywords

References

  1. Foster, M. A., Fell, R. and Spannagle M. (1999), A Framework for Estimating the Probability of Failure of Embankment Dams by Internal Erosion and Piping using Event Tree Methods. UNICIV Report R-377, UNSW, Sydney, Australia. ISBN 85841 344 2.
  2. Gary, W. Jaworski, and Duncan, J. M. (1981), Laboratory Study of Hydraulic Fracturing, J. Geotech. Eng. Div, ASCE, Vol.107, No.GT6, Jun., pp.713-732.
  3. Nippon Koei (1974), Daecheong Multipurpose Dam Project, Design Report, Augst, pp.32-34.
  4. Kim, J.-H., Yi, M.-J., Song, Y., Seol, S.-J., Chung, S.-H., and Kim, K-S. (2001) Application of Geophysical Methods to the Safety Analysis of an Earth, EAGE 63rd Conference and Technical Exhibition, Amsterdam, The Netherlands, M-04.
  5. Lo, K. Y. & Kaniaru, K. (1990), Hydraulic fracturing in Earth and Rockfill dams, Canadian Geotechnical Journal, No.27, pp.495-506.
  6. Kjaernsli, B., and Torblaa, I. (1968), Leakage through Horizontal Cracks in the Core of Hyttejuvet Dam, Norwegian Geotechnical Institute, Publication No.80, pp.39-47.
  7. Sherard, J. L. (1985), Hydraulic Fracturing in Embankment Dams, Seepage and Leakage from Dams and Impoundments, Proceedings, ASCE National Convention, Denver, Colorado, pp.115-141.
  8. Vaughan, P. R. (1976), Cracking of Embankment Dam Cores and the Design of Filters for their Protection, Lecture given in Madrid on 1st. June.
  9. Yi, M.-J., Kim, J.-H., Song, Y., Cho, S.-J., Chung, S.-H, and Suh, J.-H. (2001), Three dimensional Imaging of subsurface structures using resistivity data, Geophysical Prospecting, EEGS, Vol.49, No.4, pp.483-497. https://doi.org/10.1046/j.1365-2478.2001.00269.x