• Title/Summary/Keyword: geoscience and mineral resources technology

Search Result 457, Processing Time 0.03 seconds

Evaluation of Site-specific Seismic Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역에 대한 부지 고유의 지진 응답 특성 평가)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo;Kim, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.1-13
    • /
    • 2007
  • In order to evaluate the local site effects at two town fortress areas in Korea where stone parapets were col-lapsed by historical earthquakes, site characteristics were assessed using site investigations such as borehole drillings and seismic tests. Equivalent-linear site response analyses were conducted based on the shear ways velocity ($V_s$) profiles and geotechnical characteristics determined from site investigations. The study sites are categorized as site classes C and B according to the mean $V_s$ to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in the short period range of 0.06 to 0.16 sec, which contains the natural period of fortress wall and stone parapet. From the results of site response analyses in the study areas, for site class C indicating most of site conditions, contrary to site class B, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_a$ and $F_v$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the high amplification in short period range, which represent the site-specific seismic response characteristics. These site-specific response characteristics indicate the potential of resonance in fortress walls during earthquake and furthermore could strongly affect the collapse of parapets resulted from seismic events in historical records.

Holocene Glaciomarine Sedimentation and Its Paleoclimatic Implication on the Svalbard Fjord in the Arctic Sea (북극해 스발바드 군도 피오르드에서 일어난 홀로세의 빙해양 퇴적작용과 고기후적 의미)

  • Yoon, Ho-Il;Kim, Yea-Dong;Yoo, Kyu-Cheul;Lee, Jae-Il;Nam, Seung-Il
    • Ocean and Polar Research
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Analyses of sedimentological and geochemical parameters from two radiocarbon-dated sediment cores (JM98-845-PC and JM98-818-PC) retrieved from the central part of Isfjorden, Svalbard, in the Arctic Sea, reveal detailed paleoclimatic and paleoceanographic histories over the last 15,000 radiocarbon years. The overconsolidated diamicton at the base of core JM98-845-PC is supposed to be a basal till deposited beneath pounding glacier that had advanced during the LGM (Last Glacial Maximum). Deglaciation of the fjord commenced after the glacial maximum, marked by the deposition of interlaminated sand and mud in the ice-proximal zone by subglacial meltwater discharge, and prevailed between 13,700 and 10,800 yr B.P. with enriched-terrigenous organic materials. A return to colder conditions occurred at around 10,800 yr B.P. with a drop in TOC content, which is probably coincident with the Younger Dryas event in the North Atlantic region. At this time, an abrupt decrease of TOC content as well as an increase in C/N ratio suggests enhanced terrigenous input due to the glacial readvance. A climatic optimum is recognized between 8,395 and 2,442 yr B.P., coinciding with 'a mid-Holocene climatic optimum' in Northern Hemisphere sites (e.g., the Laurentide Ice sheet). During this time, as the sea ice receded from the fjord, enhanced primary productivity occurred in open marine conditions, resulting in the deposition of organic-enriched pebbly mud with evidence of TOC maxima and C/N ratio minima in sediments. Fast ice also disappeared from the coast, providing the maximum of IRD (ice-rafted debris) input. Around 2,442 yr B.p. (the onset of Neoglacial), pebbly mud, characterized by a decrease in TOC content, reflects the formation of more extensive sea ice and fast ice, which might cause decreased primary productivity in the surface water, as evidenced by a decrease in TOC content. Our results provide evidence of climatic change on the Svalbard fjords that helps to refine the existence and timing of late Pleistocene and Holocene millennial-scale climatic events in the Northern Hemisphere.

Research Trends of Foreign Countries on Geological Evaluation of Abiotic Hydrogen Productivity: A Review (비생물기원 수소 생산성의 지질학적 평가 관련 해외 연구 동향: 리뷰 논문)

  • Jeong, Seongwoo;Kim, Taeyong;Ko, Kyoungtae;Yang, Minjune
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.627-642
    • /
    • 2022
  • The world's long reliance on fossil fuels (e.g., oil, coal, and natural gas) is severely changing its environment and climate. Energy research has focused on developing hydrogen as the most promising energy carrier and a key technology for sustainable energy development. Hydrogen can be classified as gray, blue, green, and otherwise according to the raw materials and methods used for production and processing. For the development of hydrogen energy, geologists are attempting to identify the mechanism of abiotic hydrogen generation by serpentinization or hydrothermal alteration. Teams in the United States, France, and Australia have researched laboratory-scale hydrogen production through water-rock interactions under various conditions, whereas there has been almost no research on abiotic hydrogen in South Korea. This paper reviews the current state of international research on hydrothermal alteration and offers suggestions for future investigations of abiotic hydrogen production in South Korea.

Investigation on sample throughput of large scale splitter-less gravitational SPLITT fractionation (GSF) (Large scale Gravitational SPLITT Fractionation (GSF)에서의 시료 throughput에 관한 연구)

  • Choi, Hyo Jae;Kim, Woon Jung;Eum, Chul Hun;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.34-41
    • /
    • 2013
  • Split-flow thin cell (SPLITT) fractionation (SF) is a rapid separation technique capable of separating colloidal particles or macromolecules into two or more fractions. SF allows fractionations in a preparative scale as sample is fed continuously. Generally SF uses a thin ribbon-like channel equipped with two flow stream splitters at the inlet and outlet of the channel. Thus there exist two flow inlets and two flow outlets at the top and bottom of the inlet and outlet of the channel, respectively. There are two operating modes in SF, conventional mode and full-feed mode (FFD). Although the resolution in the FFD mode is lower than that in the conventional mode, FFD mode has some merits. The design of the channel and operation are simpler in the FFD mode, as it does not require the feeding of the solvent. Thus there is no flow stream splitter at the channel inlet, and only one pump is needed, unlike the conventional mode, where two pumps are required for the feedings of the sample and the solvent separately. Also the sample is not diluted in the FFD mode as there is no solvent feeding, which is important for fractionation samples with low colloidal concentrations such as environmental samples. For some of environmental samples, pre-concentration is often required. In this study, a new large-scale splitter-less FFD-SF channel was implemented, where there is no splitter at the outlet as well as at the inlet of the channel. It was possible to build the channel in a much larger dimension than conventional ones, allowing much higher sample throughput (TP). The new channel was tested and optimized with polyurethane (PU) latex beads, and then applied to large-scale separation of Polyacrylate (PA).

Distribution and Statistical Analysis of Discontinuities in Deep Drillcore (심부시추코어를 활용한 불연속면의 분포 특성 및 통계학적 해석)

  • Junghae Choi;Youjin Jung;Dae-Sung Cheon
    • The Journal of Engineering Geology
    • /
    • v.34 no.3
    • /
    • pp.415-427
    • /
    • 2024
  • This study undertook a quantitative analysis of the distribution of fractures in deep drillcore from a Precambrian metamorphic complex on the north face of Hongcheon-gun, Gangwon-do, Korea. The fracture distribution with depth, inclination of fractures, and grain size in the fracture zone were measured and statistical techniques applied to derive probability distributions of fracture intervals. Analysis of the inclination angles of fracture planes showed that sub-horizontal fractures are dominant, and fracture spacing is mainly ≤0.5 m, with a median of 0.09 m, first quartile of 0.04 m, and third quartile of 0.18 m, indicating very dense fracture development. Statistical analysis of joint properties was undertaken with fitting using five probability density functions (double Weibull, exponential, generalized logistic, gamma, and lognormal). The lognormal distribution (sum of squared errors, SSE = 2.80) yielded the best fit based on the sum of residual squares. Quantitative characterization of the fracture characteristics of deep bedrock in the Hongcheon area is important for various geotechnical applications such as groundwater flow modeling, slope stability assessment, and underground structure design. In future studies, it will be necessary to combine in situ stress measurements and geophysical surveys to determine the relationship between fracture development and the local stress field.

Preliminary Estimation of Earthquake Losses Based on HAZUS in a Coastal Facility Area with Blocks Applying Site Classification (블록별 부지분류 적용 해안시설 영역에서의 HAZUS 기반 지진피해 추정)

  • Sun, Chang-Guk;Chun, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.10-27
    • /
    • 2014
  • HAZUS-MH is a GIS-based computer program that estimates potential losses from multi-hazard phenomena: earthquakes, floods and hurricanes. With respect to seismic disaster, characteristics of a hypothetical or actual earthquake are entered into HAZUS. Then HAZUS estimates the intensity of ground shaking and calculates the correspondent losses. In this study, HAZUS was used as a part of the preparations of the future seismic events at a coastal plant facility area. To reliably characterize the target facility area, many geotechnical characteristics data were synthesized from the existing site investigation reports. And the buildings and facilities were sorted by analyzing their material and structural characteristics. In particular, the study area was divided into 17 blocks taking into account the situation of both land development and facility distribution. The ground conditions of blocks were categorized according to the site classification scheme for earthquake-resistant design. Moreover, seismic fragility curves of a main facilities were derived based on the numerical modeling and were incorporated into the database in HAZUS. The results estimated in the study area using HAZUS showed various seismic damage and loss potentials depending on site conditions and structural categories. This case study verified the usefulness of the HAZUS for estimating earthquake losses in coastal facility areas.

Analysis of electrical resistivity characteristics according to the mixing ratio of coarse fillings in artificial rock joint (인공 암반절리의 조립토 충진물 혼합비에 따른 전기비저항 특성 분석)

  • Haeju Do;Tae-Min Oh;Hangbok Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2023
  • Monitoring technology based on electrical resistivity is widely used for non-destructive data collection and health analysis of underground structures and tunnels. Vulnerable sections such as fault zone generates many problems during construction of the tunnel. These problems cause displacement and stress changes of the ground. Therefore, it is necessary to predict the state of the fault zone section to ensure the mechanical stability of the underground structure. Monitoring the size of joints and the porosity of the fillings is essential for rocks. Previous studies have not considered the variety of fillings in rock joints. In this study, electrical resistivity tests were conducted according to the particle mixing state of the sandy fillings. When the size of fillings is decreased at the constant porosity, the electrical resistivity tends to increase. The results of this study are expected to be useful as basic electrical resistivity data for predicting the ground conditions and evaluation of the ground behavior that is containing sandy fillings in the rock joint for tunnels.

Estimation to Shear Strength of Basalt using Lade's Three-dimensional Failure Criterion (Lade의 3차원 파괴규준을 이용한 현무암의 전단강도 산정)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.19-27
    • /
    • 2010
  • In this study, a series of triaxial tests to Jeju basalt were carried out and then shear strength parameters of rock were estimated by the Lade's three-dimensional failure criterion. Also, the characteristics of shear strength parameters and failure plane which were estimated by the three-dimensional failure criterion were analyzed and this failure criterion was compared with the Mohr-Coulomb failure criterion. The variables of ${\eta}_1$ and m are derived from the relationship between ($I_1^3/I_3-27$) and ($P_a/I_1$) during the failure period using the Lade's three-dimensional failure criterion. The failure plane size of Tracy-basalt has the largest plane and that of Scoria has the smallest plane among other octahedral planes which is the three-dimensional failure plane. Also, the failure plane of Tracy-basalt is formed as a triangle and that of Scoria is formed as a circle among other octahedral planes. As the result of comparison with the triaxial test results and the Lade's failure envelope and the Mohr-Coulomb failure envelope, the Lade's failure envelope matched up under higher stress, while the Mohr-Coulomb failure envelope matched up under lower stress. Also, the Lade's three-dimensional failure plane is larger than the Mohr-Coulomb three-dimensional failure plane. It means that the shear strength parameters estimated by the Lade's failure criterion is larger than that of the Mohr-Coulomb failure criterion.

  • PDF

Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF) (Steric 모드의 침강장-흐름 분획법을 이용한 황사의 특성분석)

  • Eum, Chul Hun;Kim, Bon Kyung;Kang, Dong Young;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.476-482
    • /
    • 2012
  • Asian dust particles are known to have sizes ranging from a few nanometers up to about a few micrometers. The environmental and health effects depend on the size of the dust particles. The smaller, the farther they are transported, and the deeper they penetrate into the human respiratory system. Sedimentation field-flow fractionation (SdFFF) provides separation of nano to microparticles using a combination of centrifugal force and parabolic laminar flow in a channel. In this study, the steric mode of SdFFF (Sd/StFFF) was tested for size-based separation and characterization of Asian dust particles. Various SdFFF experimental parameters including flow rate, stop-flow time and field strength of the centrifugal field were optimized for the size analysis of Asian dust. The Sd/StFFF calibration curve showed a good linearity with $R^2$ value of 0.9983, and results showed an excellent capability of Sd/StFFF for a size-based separation of micron-sized particles.The optical microscopy (OM) was also used to study the size and the shape of the dust particles. The size distributions of the samples collected during a thick dust period were shifted towards larger sizes than those of the samples collected during thin dust periods. It was also observed that size distribution of the sample collected during dry period shifts further towards larger sizes than that of the samples collected during raining period, suggesting the sizes of the dust particle decrease during raining periods as the components adsorbed on the surface of the dust particles were removed by the rain water. Results show Sd/StFFFis a useful tool for size characterization of environmental particles such as the Asian dust.

Development of Korean Lunar Highland Soil Simulant (KIGAM-L1) (한국형 달 고원 모사토(KIGAM-L1) 개발)

  • Tae-Yun Kang;Eojin Kim;Kyeong Ja Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.121-136
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO), launched in August 2022, is successfully carrying out its mission. Korea's lunar lander and rover programs are expected to proceed in the future. To successfully carry out the mission after the lunar lander has landed on the surface, the performance of the equipment to be mounted should be checked in a laboratory environment similar to the Moon. Scientists and engineers of several countries, including the United States and China, use lunar soil simulant which is developed to resemble lunar soil for simulating the surface of the lunar landing site. Several lunar probe landing sites are being discussed in Korea, and lunar soil simulants such as Korea Hanyang Lunar Simulant-1 (KOHLS-1), Korea Aerospace University Mechanical Lunar Simulants (KAUMLS), and Korea Lunar Simulant-1 (KLS-1), which are similar to the characteristics of lunar mare soil, have been developed. However, those simulants are not useful if the landing site is chosen as a highland area. In this study, we introduce the process of developing KIGAM-L1, a lunar highland soil simulant similar to the chemical composition of the Apollo 16 lunar soil sample and the particle size distribution of lunar soil sample 60500-1, in case the lunar lander lands at highland area.