Browse > Article
http://dx.doi.org/10.5806/AST.2013.26.1.034

Investigation on sample throughput of large scale splitter-less gravitational SPLITT fractionation (GSF)  

Choi, Hyo Jae (Department of Chemistry, Hannam University)
Kim, Woon Jung (Department of Chemistry, Hannam University)
Eum, Chul Hun (Korea Institute of Geoscience and mineral Resources)
Lee, Seungho (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.26, no.1, 2013 , pp. 34-41 More about this Journal
Abstract
Split-flow thin cell (SPLITT) fractionation (SF) is a rapid separation technique capable of separating colloidal particles or macromolecules into two or more fractions. SF allows fractionations in a preparative scale as sample is fed continuously. Generally SF uses a thin ribbon-like channel equipped with two flow stream splitters at the inlet and outlet of the channel. Thus there exist two flow inlets and two flow outlets at the top and bottom of the inlet and outlet of the channel, respectively. There are two operating modes in SF, conventional mode and full-feed mode (FFD). Although the resolution in the FFD mode is lower than that in the conventional mode, FFD mode has some merits. The design of the channel and operation are simpler in the FFD mode, as it does not require the feeding of the solvent. Thus there is no flow stream splitter at the channel inlet, and only one pump is needed, unlike the conventional mode, where two pumps are required for the feedings of the sample and the solvent separately. Also the sample is not diluted in the FFD mode as there is no solvent feeding, which is important for fractionation samples with low colloidal concentrations such as environmental samples. For some of environmental samples, pre-concentration is often required. In this study, a new large-scale splitter-less FFD-SF channel was implemented, where there is no splitter at the outlet as well as at the inlet of the channel. It was possible to build the channel in a much larger dimension than conventional ones, allowing much higher sample throughput (TP). The new channel was tested and optimized with polyurethane (PU) latex beads, and then applied to large-scale separation of Polyacrylate (PA).
Keywords
SPLITT; FFD throughput; polyurethane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. C. Giddings, Sep. Sci. Technol., 20(9-10), 749-768 (1985).   DOI   ScienceOn
2 S. R. Springston, M. N. Myers and J. Calvin Giddings, Anal. Chem., 59(2), 344-350 (1987).   DOI
3 J. C. Giddings, Sep. Sci. Technol., 23(1-3), 119-131 (1988).   DOI   ScienceOn
4 J. C. Giddings, Sep. Sci. Technol., 23(8-9), 931-943 (1988).   DOI   ScienceOn
5 S. Levin, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 24(14), 1245-1259 (1989).   DOI
6 Y. Gao, M. N. Myers, B. N. Barman and J. Calvin Giddings, Part. Sci. Technol., 9(3-4), 105-118 (1991).   DOI
7 J. C. Giddings, Sep. Sci. Technol., 27(11), 1489-1504 (1992).   DOI
8 P. S. Williams, S. Levin, T. Lenczycki and J. C. Giddings, Ind. Eng. Chem. Res., 31(9), 2172-2181 (1992).   DOI
9 C. B. Fuh and J. C. Giddings, Sep. Sci. Technol., 32(18), 2945-2967 (1997).   DOI   ScienceOn
10 C. B. Fuh, M. N. Myers and J. C. Giddings, Anal. Chem., 64(24), 3125-3132 (1992).   DOI
11 S. Levin and G. Tawil, Anal. Chem., 65(17), 2254-2261 (1993).   DOI   ScienceOn
12 S. Levin and J. C. Giddings, J. Chem. Technol. Biotechnol., 50(1), 43-56 (1991).
13 J. Zhang, P. S. William, M. N. Myers and J. C. Giddings, Sep. Sci. Technol., 29(18), 2493-2522 (1994).   DOI   ScienceOn
14 C. B. Fuh, E. M. Trujillo and J. C. Giddings, Separation Science Technology, 3861-3876 (1995).
15 Y. Jiang, A. Kummerow and M. Hansen, J. Microcolumn Sep., 9(4), 261-273 (1997).   DOI
16 Y. Jiang, M. E. Miller, M. E. Hansen, M. N. Myers and P. S. Williams, J. Magn. Magn. Mater., 194(1), 53-61 (1999).   DOI   ScienceOn
17 R. G. Keil, E. Tsamakis, C. B. Fuh, J. C. Giddings and J. I. Hedges, Geochim. Cosmochim. Acta, 58(2), 879- 893 (1994).   DOI   ScienceOn
18 C. Contado, F. Dondi, R. Beckett and J. C. Giddings, Anal. Chim. Acta, 345(1-3), 99-110 (1997).   DOI   ScienceOn
19 F. Dondi, C. Contado, G. Blo and S. Garia Martin, Chromatographia, 48(9-10), 643-654 (1998).   DOI   ScienceOn
20 M. H. Moon, S. G. Yang, J. Y. Lee and S. Lee, Anal. Bioanal. Chem., 381(6), 1299-1304 (2005).   DOI   ScienceOn
21 M. N. Myers, Y. Jiang and J. C. Giddings, Proceeding of the Fifth International Symposium on Field-Flow Fractionation, Utah, USA, 37-38 (1995).
22 M. H. Moon, D. Kang, H. Lim, J. E. Oh and Y. S. Chang, Environ. Sci. Technol., 36(20), 4416-4423 (2002).   DOI   ScienceOn
23 M. H. Moon, D. Kang, L. Dai Woon and Y. S. Chang, Anal. Chem., 73(3), 693-697 (2001).   DOI   ScienceOn
24 C. Contado and F. Dondi, J. Sep. Sci., 26(5), 351-362 (2003).   DOI   ScienceOn