Browse > Article
http://dx.doi.org/10.9720/kseg.2022.4.627

Research Trends of Foreign Countries on Geological Evaluation of Abiotic Hydrogen Productivity: A Review  

Jeong, Seongwoo (Major of Earth and Environmental Sciences, Division of Earth and Environmental System Sciences, Pukyong National University)
Kim, Taeyong (Major of Earth and Environmental Sciences, Division of Earth and Environmental System Sciences, Pukyong National University)
Ko, Kyoungtae (Geological Research Center, Geology Division, Korea Institute of Geoscience and Mineral Resources)
Yang, Minjune (Major of Environmental Geosciences, Division of Earth and Environmental System Sciences, Pukyong National University)
Publication Information
The Journal of Engineering Geology / v.32, no.4, 2022 , pp. 627-642 More about this Journal
Abstract
The world's long reliance on fossil fuels (e.g., oil, coal, and natural gas) is severely changing its environment and climate. Energy research has focused on developing hydrogen as the most promising energy carrier and a key technology for sustainable energy development. Hydrogen can be classified as gray, blue, green, and otherwise according to the raw materials and methods used for production and processing. For the development of hydrogen energy, geologists are attempting to identify the mechanism of abiotic hydrogen generation by serpentinization or hydrothermal alteration. Teams in the United States, France, and Australia have researched laboratory-scale hydrogen production through water-rock interactions under various conditions, whereas there has been almost no research on abiotic hydrogen in South Korea. This paper reviews the current state of international research on hydrothermal alteration and offers suggestions for future investigations of abiotic hydrogen production in South Korea.
Keywords
abiotic hydrogen; hydrogen production; serpentinization; water-rock interaction; ultramafic rock; granite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McCollom, T.M., Klein, F., Moskowitz, B., Berquo, T.S., Bach, W., Templeton, A.S., 2020, Hydrogen generation and iron partitioning during experimental serpentinization of an olivine-pyroxene mixture, Geochimica et Cosmochimica Acta, 282, 55-75.   DOI
2 Morrill, P.L., Kuenen, J.G., Johnson, O.J., Suzuki, S., Rietze, A., Sessions, A.L., Fogel, M.M., Nealson, K.H., 2013, Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars, Geochimica et Cosmochimica Acta, 109, 222-240.   DOI
3 Pokrovsky, O.S., Schott, J., Castillo, A., 2005, Kinetics of brucite dissolution at 25℃ in the presence of organic and inorganic ligands and divalent metals, Geochimica et Cosmochimica Acta, 69, 905-918.   DOI
4 Siegel, K., Vasyukova, O.V., Williams-Jones, A.E., 2018, Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Quebec-Labrador, Lithos, 308, 34-52.   DOI
5 Wenner, D.B., Taylor Jr, H.P., 1974, D/H and O18/O16 studies of serpentinization of ultramaflc rocks, Geochimica et Cosmochimica Acta, 38(8), 1255-1286.   DOI
6 Wood Mackenzie, 2022, Hydrogen: the US$600 billion investment opportunity, Retrieved from https://www.woodmac.com/news/opinion/hydrogen-the-us$600-billion-investment-opportunity.
7 Truche, L., Bourdelle, F., Salvi, S., Lefeuvre, N., Zug, A., Lloret, E., 2021, Hydrogen generation during hydrothermal alteration of peralkaline granite, Geochimica et Cosmochimica Acta, 308, 42-59.   DOI
8 Des Marais, D.J., 2007, Stable light isotope biogeochemistry of hydrothermal systems, In: Bock, G.R., Goode, J.A. (Eds.), Ciba Foundation Symposium 202 - Evolution of Hydrothermal Ecosystems on Earth (And Mars?), John Wiley & Sons, Ltd., 83-98.
9 Zgonnik, V., 2020, The occurrence and geoscience of natural hydrogen: A comprehensive review, Earth-Science Reviews, 203, 103140.   DOI
10 Neal, C., Stranger, G., 1983, Hydrogen generation from mantle source rocks in Oman, Earth and Planetary Science Letters, 66, 315-320.   DOI
11 Marques, J.M., Matias, M.J., Basto, M.J., Carreira, P.M., Aires-Barros, L.A., Goff, F.E., 2010, Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks, Geothermics, 39(2), 152-160.   DOI
12 Janecky, D.R., Seyfried Jr, W.E., 1986, Hydrothermal serpentinization of peridotite within the oceanic crust: Experimental investigations of mineralogy and major element chemistry, Geochimica et Cosmochimica Acta, 50(7), 1357-1378.   DOI
13 Klein, F., Tarnas, J.D., Bach, W., 2020, Abiotic sources of molecular hydrogen on Earth, Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(1), 19-24.   DOI
14 Lazar, C., 2020, Using silica activity to model redox-dependent fluid compositions in serpentinites from 100 to 700℃ and from 1 to 20 kbar, Journal of Petrology, 61(11-12), egaa101.   DOI
15 Bryanchaninova, N.I., Dubinina, E.O., Makeev, A.B., 2004, Hydrogen isotope geochemistry of chromite-bearing ultramafic rocks of the Urals, Doklady Earth Sciences, 395(3), 359-363.
16 Flores, G.E., Campbell, J.H., Kirshtein, J.D., Meneghin, J., Podar, M., Steinberg, J.I., Seewald, J.S., Tivey, M.K., Voytek, M.A., Yang, Z.K., Reysenbach, A.L., 2011, Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge, Environmental Microbiology, 13(8), 2158-2171.   DOI
17 Deville, E., Prinzhofer, A., 2016, The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia, Chemical Geology, 440, 139-147.   DOI
18 Angino, E.E., Coveney, R.M.J., Goebel, E.D., Zeller, E.J., Dreschhoff, G.A.M., 1984, Hydrogen and nitrogen - origin, distribution, and abundance, a followup, Oil and Gas Journal, 82, 142-146.
19 Bach, W., Paulick, H., Garrido, C.J., Ildefonse, B., Meurer, W.P., Humphris, S.E., 2006, Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274), Geophysical Research Letters, 33(13), L13306.   DOI
20 Bowers, T.S., 1989, Stable isotope signatures of water-rock interaction in mid-ocean ridge hydrothermal systems: Sulfur, oxygen, and hydrogen, Journal of Geophysical Research: Solid Earth, 94(B5), 5775-5786.   DOI
21 Lang, S.Q., Fruh-Green, G.L., Bernasconi, S.M., Lilley, M.D., Proskurowski, G., Mehay, S., Butterfield, D.A., 2012, Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system, Geochimica et Cosmochimica Acta, 92, 82-99.   DOI
22 Etiope, G., Schoell, M., Hosgormez, H., 2011, Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars, Earth and Planetary Science Letters, 310(1-2), 96-104.   DOI
23 Frost, B.R., Evans, K.A., Swapp, S.M., Beard, J.S., Mothersole, F.E., 2013, The process of serpentinization in dunite from New Caledonia, Lithos, 178, 24-39.   DOI
24 Holm, N.G., Charlou, J.L., 2001, Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge, Earth and Planetary Science Letters, 191(1-2), 1-8.   DOI
25 Jones, L.C., Rosenbauer, R., Goldsmith, J.I., Oze, C., 2010, Carbonate control of H2 and CH4 production in serpentinization systems at elevated P-Ts, Geophysical Research Letters, 37(14), L14306.   DOI
26 Berndt, M.E., Allen, D.E., Seyfried Jr, W.E., 1996, Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bar, Geology, 24(4), 351-354.   DOI
27 Blattner, P., 1985, Isotope shift data and the natural evolution of geothermal systems, Chemical Geology, 49(1-3), 187-203.   DOI
28 Boreham, C.J., Edwards, D.S., Czado, K., Rollet, N., Wang, L., van der Wielen, S., Champion, D., Blewett, R., Feitz, A., Henson, P.A., 2021, Hydrogen in Australian natural gas: Occurrences, sources and resources, The APPEA Journal, 61(1), 163-191.   DOI
29 Kim, J.H., Park, D.K., Kim, J.H., Kim, H.J., Kim, H.S., Kang, S.H., Ryu, J.H., 2021, Trend of CO2 free H2 production technology for carbon neutrality, Journal of Energy & Climate Change, 16(2), 103-127 (in Korean with English abstract).
30 Kyser, T.K., O'Hanley, D.S., Wicks, F.J., 1999, The origin of fluids associated with serpentinization; evidence from stableisotope compositions, The Canadian Mineralogist, 37(1), 223-237.
31 Lollar, B.S., Onstott, T.C., Lacrampe-Couloume, G., Ballentine, C.J., 2014, The contribution of the Precambrian continental lithosphere to global H2 production, Nature, 516(7531), 379-382.   DOI
32 Magaritz, M., Taylor Jr, H.P., 1974, Oxygen and hydrogen isotope studies of serpentinization in the Troodos ophiolite complex, Cyprus, Earth and Planetary Science Letters, 23(1), 8-14.   DOI
33 McCollom, T.M., Donaldson, C., 2016, Generation of hydrogen and methane during experimental low-temperature reaction of ultramafic rocks with water, Astrobiology, 16(6), 389-406.   DOI
34 Miller, H.M., Mayhew, L.E., Ellison, E.T., Kelemen, P., Kubo, M., Templeton, A.S., 2017, Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite, Geochimica et Cosmochimica Acta, 209, 161-183.   DOI
35 Moore, B.J., Sigler, S., 1987, Analyses of natural gases, 1917-85 (No. 9129), US Department of the Interior, Bureau of Mines.
36 Murray, J., Clement, A., Fritz, B., Schmittbuhl, J., Bordmann, V., Fleury, J.M., 2020, Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-sous-Forets geothermal site, France, Applied Geochemistry, 119, 104631.   DOI
37 Proskurowski, G., Lilley, M.D., Kelley, D.S., Olson, E.J., 2006, Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer, Chemical Geology, 229(4), 331-343.   DOI
38 Schroeder, T., John, B., Frost, B.R., 2002, Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges, Geology, 30(4), 367-370.   DOI
39 Sleep, N.H., Bird, D.K., 2007, Niches of the pre-photosynthetic biosphere and geologic preservation of Earth's earliest ecology, Geobiology, 5(2), 101-117.   DOI
40 Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., Bird, D.K., 2004, H2-rich fluids from serpentinization: Geochemical and biotic implications, Proceedings of the National Academy of Sciences, 101(35), 12818-12823.   DOI
41 Mayhew, L.E., Ellison, E.T., McCollom, T.M., Trainor, T.P., Templeton, A.S., 2013, Hydrogen generation from lowtemperature water-rock reactions, Nature Geoscience, 6(6), 478-484.   DOI
42 Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P., Holm, N., 2002, Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR), Chemical Geology, 191(4), 345-359.   DOI
43 Ehhalt, D.H., Rohrer, F., 2009, The tropospheric cycle of H2: A critical review, Tellus B: Chemical and Physical Meteorology, 61(3), 500-535.   DOI
44 Frost, B.R., 1985, On the stability of sulfides, oxides, and native metals in serpentinite, Journal of Petrology, 26(1), 31-63.   DOI
45 Truche, L., McCollom, T.M., Martinez, I., 2020, Hydrogen and abiotic hydrocarbons: Molecules that change the world, Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(1), 13-18.   DOI
46 Wenner, D.B., 1979, Hydrogen, oxygen and carbon isotopic evidence for the origin of rodingites in serpentinized ultramafic rocks, Geochimica et Cosmochimica Acta, 43(4), 603-614.   DOI