DOI QR코드

DOI QR Code

Development of Korean Lunar Highland Soil Simulant (KIGAM-L1)

한국형 달 고원 모사토(KIGAM-L1) 개발

  • Tae-Yun Kang (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Eojin Kim (Natural Science Research Institute, Chungnam National University) ;
  • Kyeong Ja Kim (Korea institute of Geoscience and Mineral Resources)
  • 강태윤 (충남대학교 우주지질학과) ;
  • 김어진 (충남대학교 자연과학연구소) ;
  • 김경자 (한국지질자원연구원)
  • Received : 2024.04.14
  • Accepted : 2024.05.02
  • Published : 2024.05.31

Abstract

Korea Pathfinder Lunar Orbiter (KPLO), launched in August 2022, is successfully carrying out its mission. Korea's lunar lander and rover programs are expected to proceed in the future. To successfully carry out the mission after the lunar lander has landed on the surface, the performance of the equipment to be mounted should be checked in a laboratory environment similar to the Moon. Scientists and engineers of several countries, including the United States and China, use lunar soil simulant which is developed to resemble lunar soil for simulating the surface of the lunar landing site. Several lunar probe landing sites are being discussed in Korea, and lunar soil simulants such as Korea Hanyang Lunar Simulant-1 (KOHLS-1), Korea Aerospace University Mechanical Lunar Simulants (KAUMLS), and Korea Lunar Simulant-1 (KLS-1), which are similar to the characteristics of lunar mare soil, have been developed. However, those simulants are not useful if the landing site is chosen as a highland area. In this study, we introduce the process of developing KIGAM-L1, a lunar highland soil simulant similar to the chemical composition of the Apollo 16 lunar soil sample and the particle size distribution of lunar soil sample 60500-1, in case the lunar lander lands at highland area.

2022년 8월 발사된 한국형 탐사선(KPLO)이 현재 임무를 성공적으로 수행하고 있으며, 향후 한국의 달 착륙선과 로버 프로그램이 진행될 것으로 기대된다. 달착륙선이 표면에 착륙한 후 임무를 성공적으로 수행하기 위해서는 장착할 장비의 성능을 달과 유사한 실험실 환경에서 점검해야 한다. 이를 위해 달 착륙 지점의 표면을 시뮬레이션하기 위해 미국, 중국 등 여러 나라에서 아폴로 착륙선의 달 토양 샘플과 유사한 달 토양 모사토를 개발하여 사용한다. 국내에서도 여러 달 탐사선 착륙지가 거론되고 있고 달 바다 토양의 특성과 유사한 달 토양 모사토 KOHLS-1(Korea Hanyang Lunar Simulant-1), KAUMLS(Korea Aerospace University Mechanical Lunar Simulants), KLS-1(Korea Lunar Simulant-1)가 개발되었다. 그러나 착륙 장소로 달 고원 지대가 선택될 경우에는 앞의 세 가지 모사토는 유용하지 않다. 본 연구에서는 달 착륙선이 고원 지대에 착륙하는 경우를 대비하여 아폴로 16호 달 토양 샘플의 화학적 조성과 달 토양 샘플 60500-1의 입자 크기 분포를 기준으로 모사하여 달 고지대 토양 모사토 KIGAM-L1을 개발하는 과정을 소개한다.

Keywords

Acknowledgement

본 논문은 제1저자인 강태윤의 충남대학교 석사학위 논문의 일부를 발췌하여 작성이 되었음을 밝힙니다. 본 연구는 정부(과학기술정보통신부)의 재원으로 한 국지질자원연구원의 지원을 받아 수행되었습니다(KIGAM, 23-3216). 또한 본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2022R1A2C1092602).

References

  1. Sibille L, Carpenter P, Schlagheck R, French RA, Lunar regolith simulant materials: recommendations for standardization, production and usage, Marshall Space Flight Center Report, NASA/TP-2006-214605 (2006).
  2. Koh SW, Chang BC, Koo JK, Lee TS, Study for Korean lunar simulant prototype development, Proceeding of 35th KSCE Convention, Hoengseong, Korea, 21-23 Oct 2009.
  3. Yoo SH, Kim HD, Im JH, Park J, Development of KAU mechanical lunar simulants and drop test of lunar landing gears, J. Korean Soc. Aeronaut. Space Sci. 42, 1037-1044 (2014). http://dx.doi.org/10.5139/JKSAS.2014.42.12.1037
  4. Ryu, BH, Chang I, Kim YS, Baek Y, Basic study for a Korean Lunar Simulant (KLS-1) development, Proceeding of KSEG 2016 Spring Conference, Jeju, Korea, 7-8 Apr 2016.
  5. McKay DS, Blacic JD, Workshop on production and uses of simulated lunar materials, LPI Technical Report, 91-01 (1991).
  6. Weiblen PW, Gordon K, Characteristics of a simulant for lunar surface materials, in 2nd Conference on Lunar Bases and Space Activities of the 21st Century, Houston, TX, 5-7 Apr 1988.
  7. Desai CS, Development and mechanical properties of structural materials from lunar simulant, NASA Technical Reports, 19910015068 (1991).
  8. Hill E, Mellin MJ, Deane B, Liu Y, Taylor LA, Apollo sample 70051 and high- and low-Ti lunar soil simulants MLS-1A and JSC-1A: implications for future lunar exploration, J. Geophys. Res. 112, E02006 (2007). https://doi.org/10.1029/2006JE002767
  9. Taylor PT, Lowman PD, Bagihara S, Milam MB, Nakamura Y, Jurassic diabase from Leesburg, VA: a proposed lunar simulant, Proceeding of NLSI Lunar Science Conference, Moffett Field, CA, 20-23 Jul 2008.
  10. Stoeser D, Wilson S, Rickman D, Design and specifications for the highland regolith prototype simulants NU-LHT-1M and -2M, NASA Technical Report, 2010-216438
  11. Dreyer CB, Susante PJ, Lunar excavation systems at the Colorado School of Mines, in Workshop for the Lunar Applications of Mining and Mineral Beneficiation, Butte, MT, 5-7 Oct 2010.
  12. Oravec HA, Zenga X, Asnani VM, Design and characteraization of GRC-1: a soil for lunar terramechanics testing in Earth-ambient conditions, J. Terramech. 47, 361-377 (2010). https://doi.org/10.1016/j.jterra.2010.04.006
  13. Stoeser DB, Rickman DL, Wilson S, Preliminary geological findings on the BP-1 simulant. NASA Technical Report, NASA/TM-2010-216444 (2010).
  14. Zheng Y, Wang S, Wang S, Ouyang Z, Zou Y, et al., CAS-1, Lunar soil simulant, Adv. Space Res. 43, 448-454 (2009). https://doi.org/10.1016/j.asr.2008.07.006
  15. Li Y, Liu J, Yue Z, NAO-1: lunar highland aoil aimulant developed in China, J. Aerosp. Eng. 22, 53-57 (2009). https://doi.org/10.1061/(ASCE)0893-1321(2009)22:1(53)
  16. Li Y, Liu J, Zou Y, Ouyang Z, Zheng Y, et al., Two lunar mare soil simulants, ACTA Geol. Sinica. 85, 1016-1021 (2011). https://doi.org/10.1111/j.1755-6724.2011.00536.x
  17. Jiang M, Li L, Sun Y, Properties of TJ-1 lunar soil simulant, J. Aerosp. Eng. 25, 463-469 (2012). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000129
  18. He XX, Xiao L, Huang J, Wan CH, Wu T, et al, Lunar regolith simulant CUG-1A. in 41st Lunar and Planetary Science Conference, The Woodlands, TX, 1-5 Mar 2010.
  19. Zou WL, Li YL, Chen L, Zhang JF, Wang XQ, Mechanical properties of QH-E lunar soil simulant at low confining stresses. J. Aerosp. 29, 04015036 (2016). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000526
  20. Tang H, Li X, Zhang S, Wang S, Liu J, et al., A lunar dust simulant: CLDS-I, Adv. Space Res. 59, 1156-1160 (2017). https://doi.org/10.1016/j.asr.2016.11.023
  21. Sun H, Yi M, Shen Z, Zhang X, Ma S, Developing a new controllable lunar dust simulant: BHLD20, Planet. Space Sci. 141, 17-24 (2017). https://doi.org/10.1016/j.pss.2017.04.010
  22. Li C, Xie K, Liu A, Shi Z, The preparation and characterization of NEU-1 lunar soil simulants, J. Mineral. Met. Mater. Soc. JOM. 71, 471-1476 (2019). https://doi.org/10.1007/s11837-019-03362-6
  23. Kanamori H, Udagawa S, Yoshida T, Matsumoto S, Takagi K, Properties of lunar soil simulant manufactured in Japan. in 6th ASCE Speciality, Conference and Exposition on Engineering Construction and Operations in Space, Albuquerque, NM, 26-30 Apr 1998.
  24. Battler M, Development of an anorthositic lunar regolith simulant: OB-1, Master Thesis, The University of Western Ontario (2008).
  25. Battler M, Richard J, Boucher D, Spary J, Developing an anorthositic lunar regolith simulants, in Internation Lunar Conferences 2005, League City, TX, 14-18 Mar 2005.
  26. Cesaretti, G, Dini E, Kestelier XD, Colla V, Pambaguian L, Building components for an outpost on the lunar soil by means of a novel 3D printing technology, Acta Astronaut. 93, 430-450 (2014). https://doi.org/10.1016/j.actaastro.2013.07.034
  27. Jayakekshmi S, Kumar PG, Modified model for shear stress distribution using TRI-1 lunar soil simulant. J. Theor. Appl. Mech. 56, 137-146 (2018). https://doi.org/10.15632/jtam-pl.56.1.137
  28. Bonanno A, Bernold LE, Exploratory review of sintered lunar soil based on the results of the thermal analysis of a lunar soil simulant, J. Aerosp. Eng. 28, 040141114 (2015). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000428
  29. Engelschion VS, Eriksson SR, Cowley A, Fateri M, Meurisse A, et al., EAC-1A: a novel large-volume lunar regolith simulant, Sci. Rep. 10, 5473 (2020). https://doi.org/10.1038/s41598-020-62312-4
  30. Choi G, Yoo SH, Kim HD, Park J, Drop test of lunar landing gear considering the lunar environmentand development of lunar simulant, Proceeding of the Korean Society for Aeronautical & Space Science, Hongcheon, Korea, 15-17 Nov 2014.
  31. Ryu BH, Wang CC, Chang I, Development and geotechnical engineering properties of KLS-1 lunar simulant, J. Aerosp. Eng. 31, 04017083 (2018). https://doi.org/10.1061/(ASCE)AS.1943-5525.000079
  32. Jeong JG, Magmatic differentiation of the anorthositic rocks in Hadong-Sancheong area, J. Geol. Soc. Korea 2, 216-228 (1987).
  33. Jeong JG, Kim WS, Watkinson DH, Geologic structure of Hadong Anthositic Rocks and associated titanuim orebody, J. Geol. Soc. Korea 25, 98-111 (1989).
  34. Jeong GY, Kim S, Genesis of kaolin in the Sancheong district, Korea: mineralogical and textural study, J. Geol. Soc. Korea 30, 262-283 (2014).
  35. Lee JM, Jeong JG, Kim WS, The preliminary study on the evolution of Hadong anorthositic rocks and their genetic relations with ilmenite-bearing ore bodies, Korea, J. Geol. Soc. Korea 35, 321-336 (1999).
  36. Ryoo CR, Kim JS, Son M, Koh SM, Lee HY, Development pattern and ductile deformation of the Sancheong Fe-Ti Mineralized Zone, Korea, Petrolog. Soc. Korea 22, 209-217 (2013).
  37. Jung JS, Kim JS, Cho H, Song CW, Son M, Occurrence and deformation of Fe-Ti ores from the Proterozoic Hadong Anorthosites, Korea, Petrolog. Soc. Korea 19, 31-49 (2010).
  38. Kang TY, Development of Korean lunar highland soil simulant: KIGAM-L1, Master Thesis, Chungnam National University (2021).
  39. Lee SR, Kwon SK, Kim KJ, Lee SG, Kobayashi T, et al., Development of geochemical exploration techniques for planetary mineral resources, Korea Institute of Geoscience and Mineral Resources Report, GP2012-012-2013(2), (2013).
  40. Heiken GH, Vaniman DT, French BM, Lunar Source Book (Cambridge University Press, Cambridge, 1991).
  41. Kim YK, Lee DS, Song YK, Kim SE, Petrology of ultramafic nodules in Jogok-ri Basalt, Boun Area, Korea, J. Geol. Soc. Korea 24, 57-66 (1988).
  42. Lee HY, Petorshemical study on the mantle xwnoliths in alkli basalts from S. Korea: P-T regime of upper mantle, Petrol. Soc. Korea 4, 104-123 (1995).
  43. Song S, Song YS, Mineralogy and geochemistry of ultramafic rocks from the Singok area, Western Part of Chungnam, Econ. Environ. Geol. 34, 394-415 (2001).
  44. Song S, Choi SG, Oh CW, Seo J, Choi SH, Petrography and geochemistry of the ultramafic rocks from the Hongseong and Kwangcheon areas, Chungcheongnam-Do, Econ. Environ. Geol. 37, 477-497 (2004).
  45. Shin HJ, Ki YW, Jin MS, Lee SH, Petrological study on upper mantle xenoliths from Asan and Pyeongtaek area, J. Geol. Soc. Korea, 42, 95-113 (2006).
  46. Kil YW, Shin HJ, Yun SH, Koh JS, Ahn US, Geochemical characteristics of mineral phases in the mantle xenoliths from Sunheul-ri, Jeju Island, Petrol. Soc. Korea, 21, 373-382 (2008).
  47. Jin MS, Choi HI, Shin HJ, 150 Geologic Outcrops in Korea (Korea Institute of Geoscience and Mineral Resources, Daejeon, 2004).
  48. Choi HI, Jin MS, Shin HJ, Chang SW, Cho KN, et al., 160 Geologic Outcrops in Korea (Korea Institute of Geoscience and Mineral Resources, Daejeon, 2013).