• Title/Summary/Keyword: geophysical survey

Search Result 545, Processing Time 0.029 seconds

Geophysical Exploration on Unconformity-type Uranium Deposit in Athabaska Basin, Canada (캐나다 아타바스카 분지 부정합형 우라늄광상 물리탐사 사례)

  • You, Young-June;Kim, Jae-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.73-87
    • /
    • 2009
  • Geophysical survey for unconformity-type uranium deposit applied to this study area in Athabaska Basin, Canada were carried out airborne TEM and magnetic, resistivity-induced polarization (DC-IP), puser seismic reflection and well-logging method. The results of airborne survey interpreted the lithological boundary, geological structures, and conductors. Also, these results decided to main targets for ground DC-IP survey. The Low resistivity and the high chargeability slices of 3D modeling interpreted from DC-IP survey response for conductors related to hydrothermal alteration zones and fault-controlled graphitic zones occurring at the unconformity-type uranium deposit, and they confirmed by diamond drilling. Seismic results interpreted to lake bottom surface, alluvium layer and intra-sandstone faults. We suggest the resonable field data acquisition of DC-IP method on the land or the lake in Athabaska Basin.

  • PDF

환경물리탐사 기법을 이용한 유류오염 주유소 부지 특성 조사

  • Kim Chang-Ryeol;Go Gyeong-Seok;Kim Jeong-Ho;Park Sam-Gyu;Son Jeong-Sul;Jeong Ji-Min
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.429-432
    • /
    • 2005
  • Geophysical investigations, as a non-invasive method, were conducted at the former gas station site contaminated with fuel hydrocarbons. GPR (Ground Penetrating Radar) survey was performed to locate buried objects such as USTs (Underground Storage Tanks) and fuel pipes which might serve as a origin of the site contamination. Additional GPR investigation and a resistivity survey were conducted to map water table and to characterize shallow geologic structures of the site. The results of the study have shown that seven USTs including one unknown UST and buried fuel pipes are present, and that the groundwater elevation varies with topography from approximately 1.5 to 3m below the surface and the water table is located in the residual soils above the bedrock in the site. The results also show that the geophysical methods can be a very useful tool for the characterization of the contaminated site.

  • PDF

Ground stability analysis on the limestone region

  • Choi Sung O.;Kim Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.281-287
    • /
    • 2003
  • A Natural cavities were found at shallow depth during construction of a huge bridge in Moon-Kyung, Korea. The distribution patterns of cavities in the Moon-Kyung limestone were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map on this area. It suggested that there were three faults in this area, and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied firstly on the specific area that was selected by results from the geological survey. Many evidences for cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target area, which was focused by results from the electrical resistivity prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced. Based on the project result, finally, most of foundations for the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

  • PDF

Application of geophysical methods to determine the extent of the Dongrae Fault in the Oedong-eup area, Gyeongju City (경주시 외동읍 구어리 일대 동래단층 연장성 확인을 위한 물리탐사 적용)

  • Hwang, Hak-Soo;Hamm, Se-Yeong;Lee, Cheol-Woo;Lee, Chung-Mo;Kim, Sung Wook
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.207-215
    • /
    • 2017
  • The northern extension of the Dongrae Fault is inferred to transect the Ulsan Fault in the Gueo-ri area, Oedong-eup, ~15 km SE of Gyeongju City, Gyeongbuk province, S Korea. We conducted geological and geophysical (magnetic, electrical resistivity, and frequency domain electromagnetic) surveys to identify the extent and orientation of the Dongrae Fault in this region. Through joint interpretation of the geological and geophysical data sets, we confirm the presence of the Dongrae Fault and determine its strike ($N14^{\circ}E$). The Dongrae Fault is thought to cross the Ulsan Fault near Ipsil Bridge in the Gwangeo-ri area. Geophysical surveying revealed a fault damage zone that widens to the south, with a typical width of >200 m. Geological field surveys did not delineate the geometry of the Dongrae Fault because alluvial deposits overlie the fault in this area.

Case Study on the Investigation of Leachate Contamination from Waste Landfill Using Electromagnetic and Magnetic Methods (쓰레기 매립장 주변의 침출수 오염조사 사례: 전자탐사 및 자력탐사의 적용)

  • Son Jeong-Sul;Kim Jung-Ho;Yi Myeong-Jong;Ko Kyung-Seok
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.137-144
    • /
    • 2005
  • In this study, we offered the results of geophysical and geochemical survey on the municipal waste disposal area to delineate the size and extent of leachate contamination. Preliminary to intensive geochemical investigation, we performed two geophysical methods to characterize the survey area. Electromagnetic (EM) and magnetic method were used far site investigation. From the EM method, we can get the information of soil conductivity directly related to the leachate of the contaminations and from magnetic anomalies we can find the boundary of landfill which is not identified on the surface due to soil capping. The results of geophysical survey were well matched to those of geochemical method carried out inside and near the landfill. Electric conductivity (EC) of the groundwater sampled from low resistivity anomaly region of EM result was higher than background value and the border estimated from the magnetic survey showed good agreement with that estimated from the soil gas detection survey.

A Study on the Modified Electrode Arrays in Two-Dimensional Resistivity Survey (2차원 전기비저항 탐사를 위한 변형된 전극배열법에 관한 연구)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.59-69
    • /
    • 2001
  • Five kinds of modified electrode arrays were proposed to overcome the weak points of the commonly used arrays using dipole and/or pole in two-dimensional resistivity surveys. The modified pole-pole array was suggested to overcome the inefficiency caused by distant earthing in pole-pole array. Four kinds of modified arrays using dipole were designed to enhance the signal-to-noise ratio of the conventional dipole-dipole and pole-dipole arrays through boosting up the measured potential difference. In the numerical experiments using the two-dimensional modeling and inversion, the effects of the ambient electrical noise and the resolving power were examined and the results showed the validity of the modified arrays proposed in this study.

  • PDF

지표 물리탐사법을 이용한 염/담수 영역의 고분해능 영상화

  • 박권규;신제현;박윤성;황세호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.446-449
    • /
    • 2004
  • High resolution geophysical imaging to delineate costal aquifer and seawater- freshwater interface has been applied in Baesu-eup, Yeonggwang-gun, Jeolla province Electrical resistivity information from vertical electrical sounding and 2-D electrical resistivity survey is key parameter to map equivalent Nacl concentration map over the survey area. Seismic velocity from refraction tomographic survey, on the other hand, gives more reliable information on the subsurface stratagraphy than electrical resistivity methods which frequently suffer from low resolution due to masking effect. We imaged high-resolution 3-D structure of costal aquifer by correlating the electrical resistivity with seismic velocity, and mapped equivalent NaCl concentration map using resistivity and hydro-geological information from well logging.

  • PDF

Development of Geophysical Data Management System (물리탐사자료 데이터베이스 시스템 구축 연구)

  • Lee, Tai-Sup;Hwang, Hak-Soo;Sun, Hee-Duck;Koo, Sung-Bon;Song, Yaung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • The geophysical data management system was developed to meet both the increasing demands of geophysical data in the practical application of civil engineering, underground water survey, and environmental problems and needs for digital archive and quality control of geophysical data. The system for a data manager is developed under Client/Server (C/S) environment. This manager system is characterized by a relational geophysical database system using MS SQL-server, standardization of geophysical data format, the development of C/S interface program for Windows environment, and the development of transfer program module for the searched data. The system developed for a general user under the internet environment is characterized by Web service (URL:http//geophy.kigam.re.kr) and the development of plug-in module to visualize geophysical image data.

  • PDF

Geostatistical Integration of Multi-Geophysical Data Measured at Different Ranges (측정 범위가 다른 다중 물리 탐사 자료의 지구통계학적 복합 해석)

  • Oh, Seok-Hoon
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Integrated interpretation of multi-geophysical data has been continuously used in terms that it has provided more confident information than the result from single-geophysical data. Especially, geostatistical integration has its own superiority that it is possible to deal with spatial characteristics as well as physical properties of survey data and the process of integration is clear. This paper further extends the previous work of geostatistical inversion for integrated interpretation. In this paper, we propose a new way of dealing with the case that the multi-geophysical data do not share the measurement range. According to the geostatistical kriging, the closer between the measurement points, the smaller kriging variance we get, and vice versa. We used this spatial properties as a weighting value to the process of geostatistical inversion for the geophysical data integration. An objective way to integrate different kinds of geophysical data measured at different ranges is provided with this algorithm.

Geophysical survey around East Sea Research Institute (KORDI) using multi-beam and shallow seismic survey (다중빔 음향측심기 및 천부탄성파 탐사를 이용한 동해연구소 주변 지구물리조사)

  • Jeong, Eui-Young;Kim, Chang-Hwan;Lee, Seung-Hun;Kim, Ho;Park, Chan-Hong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.185-190
    • /
    • 2008
  • Geophysical survey were investigated in the offshore around East Sea Research Institute, Korea Ocean Research and Development Institute (Jukbyeon-myun, Uljin-gu, Gyeongsangbuk-do, Korea). The surveys were conducted aboard the R/V Jangmok in 2008 using a hull-mounted EM 3002 multi-beam echosounder. Precise bathymetry and seabed images were obtained using multi-beam and thicknesses of sedimentary layer were found through seismic survey. Submarine topography deepens parallel to the coastline to -60 m and rock mass distributed in the southeast of study area. By finding the thickness of sedimentary layer through seismic survey, a sedimentary thickness on the study area was established. Futhermore, monitoring data of bathymetry, substructure and sedimentary environment will be secured through successive geophysical investigation.

  • PDF