This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.
This paper investigate Descartes' , which is significant in the history of mathematics, from standpoint of problem-solving. Descartes has clarified the general principle of problem-solving. What is more important, he has found his own new method to solve confronting problem. It is said that those great achievements have exercised profound influence over following generation. Accordingly this article analyze Descartes' work focusing his method.
In this study we describe the characteristics of solving geometry problems related with the ratio of segments using the principle of the lever and the center of gravity, compare and analyze this problem solving method with the traditional Euclidean proof method and the analytic method.
In this study, we research distinctive features of geometry problem solving of middle school students whose mathematical achievement levels are distinguished by National Assessment of Educational Achievement. We classified 9 students into 3 groups according to their level : advanced level, proficient level, basic level. They solved an atypical geometry problem while all their problem solving stages were observed and then analyzed in aspect of development of geometrical concepts and access to the route of problem solving. As those analyses, we gave some suggestions of teaching on mathematics as students' achievement level.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.2
/
pp.401-420
/
2010
The purpose of this research is to find out effectiveness of geometry learning through spatial reasoning activities on mathematical problem solving ability and mathematical attitude. In order to proof this research problem, the controlled experiment was done on two groups of 6th graders in N elementary school; one group went through the geometry learning style through spatial reasoning activities, and the other group went through the general geometry learning style. As a result, the experimental group and the comparing group on mathematical problem solving ability have statistically meaningful difference. However, the experimental group and the comparing group have not statistically meaningful difference on mathematical attitude. But the mathematical attitude in the experimental group has improved clearly after all the process of experiment. With these results we came up with this conclusion. First, the geometry learning through spatial reasoning activities enhances the ability of analyzing, spatial sensibility and logical ability, which is effective in increasing the mathematical problem solving ability. Second, the geometry learning through spatial reasoning activities enhances confidence in problem solving and an interest in mathematics, which has a positive influence on the mathematical attitude.
In this paper, the author analyzed characteristics of deep mathematics learning in problem solving and problem-posing classroom teaching. Based on a simple wrong plane geometry problem, the author describes the classroom experience how one expert Chinese mathematics teacher guides students to modify geometry problems from solution to investigation, and guides the students to learn how to pose mathematics problems in inquiry-based deep learning classroom. This also demonstrates how expert mathematics teacher can effectively guide students to teach deep learning in regular classroom.
In spite that the main contents of mathematical and scientific learning are understanding principles and their applications, most of existing educational softwares are based on rote learning, thus resulting in limited educational effects. In the artificial intelligence research, some progress has been made in developing automatic tutors based on proving and simulation, by adapting the techniques of knowledge representation, search and inference to the design of tutors. However, these tutors still fall short of being practical and the turor, even a prototype model, for learning problem solving is yet to come out. The geometry problem-solving tutor proposed by this research involves dynamic inference performed in parallel with learning. As an ontology for composing the problem space within a real-time setting, we have employed the notions of propositions, hypotheses and operators. Then we investigated the mechanism of interactive learning of problem solving in which the main target of inference involves the generation and the test of these components. Major accomplishment from this research is a practical model of a problem tutor embedded with a series of inference techniques for algebraic manipulation, which is indispensable in geometry problem solving but overlooked by previous research. The proposed model is expected to be applicable to the design of problem tutors in other scientific areas such as physics and electric circuitry.
This paper details case study vignettes that focus on enhancing the teaching and learning of geometry and measurement in the elementary grades with attention to pedagogical practices for teaching through problem solving with rigor and centering equitable teaching practices. Rigor is a matter of equity and opportunity (Dana Center, 2019). Rigor matters for each and every student and yet research indicates historically disadvantaged and underserved groups have more of an opportunity gap when it comes to rigorous mathematics instruction (NCTM, 2020). Along with providing a conceptual framework that focuses on the importance of equitable instruction, our study unpacks ways teachers can leverage their deep understanding of geometry and measurement learning trajectories to amplify the mathematics through rigorous problems using multiple approaches including learning by doing, challenged-based and mathematical modeling instruction. Through these vignettes, we provide examples of tasks taught through rigorous problem solving approaches that support conceptual teaching and learning of geometry and measurement. Specifically, each of the three vignettes presented includes a task that was implemented in an elementary classroom and a vertically articulated task that engaged teachers in a professional learning workshop. By beginning with elementary tasks to more sophisticated concepts in higher grades, we demonstrate how vertically articulating a deeper understanding of the learning trajectory in geometric thinking can add to the rigor of the mathematics.
In order to propose ways to implement mathematical connection between algebra and geometry, this study reinterpreted and visualized the Khayyam's geometric method solving the cubic equations using two conic sections and the Al-Kāshi's method of constructing of angle trisection using a cubic equation. Khayyam's method is an example of a geometric solution to an algebraic problem, while Al-Kāshi's method is an example of an algebraic a solution to a geometric problem. The construction and property of conics were presented deductively by the theorem of "Stoicheia" and the Apollonius' symptoms contained in "Conics". In addition, I consider connections that emerged in the alternating process of algebra and geometry and present meaningful Implications for instruction method on mathematical connection.
The dynamic geometric environment plays a positive role in solving students' geometric problems. Students can infer invariance in change through dragging, and help solve geometric problems through the analysis method. In this study, the continuous spectrum of the dynamic geometric environment can be used to solve problems of students. The continuous spectrum can be used in the 'Understand the problem' of Polya(1957)'s problem solving stage. Visually representation using continuous spectrum allows students to immediately understand the problem. The continuous spectrum can be used in the 'Devise a plan' stage. Students can define a function and explore changes visually in function values in a continuous range through continuous spectrum. Students can guess the solution of the optimization problem based on the results of their visual exploration, guess common properties through exploration activities on solutions optimized in dynamic geometries, and establish problem solving strategies based on this hypothesis. The continuous spectrum can be used in the 'Review/Extend' stage. Students can check whether their solution is equal to the solution in question through a continuous spectrum. Through this, students can look back on their thinking process. In addition, the continuous spectrum can help students guess and justify the generalized nature of a given problem. Continuous spectrum are likely to help students problem solving, so it is necessary to apply and analysis of educational effects using continuous spectrum in students' geometric learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.