• 제목/요약/키워드: geometry problem solving

검색결과 101건 처리시간 0.019초

동적기하가 원뿔곡선 문제 해결에 미치는 영향 (The Impact of Dynamic Geometry Software on High School Students' Problem Solving of the Conic Sections)

  • 홍성관;박철호
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제46권3호
    • /
    • pp.331-349
    • /
    • 2007
  • This study aims to improve the teaching and learning method on the conic sections. To do that the researcher analyzed the impact of dynamic geometry software on students' problem solving of the conic sections. Students often say, "I have solved this kind of problem and remember hearing the problem solving process of it before." But they often are not able to resolve the question. Previous studies suggest that one of the reasons can be students' tendency to approach the conic sections only using algebra or analytic geometry without the geometric principle. So the researcher conducted instructions based on the geometric and historico-genetic principle on the conic sections using dynamic geometry software. The instructions were intended to find out if the experimental, intuitional, mathematic problem solving is necessary for the deductive process of solving geometric problems. To achieve the purpose of this study, the researcher video taped the instruction process and converted it to digital using the computer. What students' had said and discussed with the teacher during the classes was checked and their behavior was analyzed. That analysis was based on Branford's perspective, which included three different stage of proof; experimental, intuitive, and mathematical. The researcher got the following conclusions from this study. Firstly, students preferred their own manipulation or reconstruction to deductive mathematical explanation or proving of the problem. And they showed tendency to consider it as the mathematical truth when the problem is dealt with by their own manipulation. Secondly, the manipulation environment of dynamic geometry software help students correct their mathematical misconception, which result from their cognitive obstacles, and get correct ones. Thirdly, by using dynamic geometry software the teacher could help reduce the 'zone of proximal development' of Vigotsky.

  • PDF

문제해결과 데카르트의 <기하학> (Problem-solving and Descartes' )

  • 한경혜
    • 한국수학사학회지
    • /
    • 제21권2호
    • /
    • pp.39-54
    • /
    • 2008
  • 이 논문에서는 문제해결의 입장에 서서 수학사에서 중요한 의미를 지닌 데카르트의 <기하학>을 고찰한다. 문제해결의 일반적 원리를 천명한 것만이 아니라 실제로 당면한 문제를 해결하기 위하여 새로운 방법을 찾아내는 것이야말로 데카르트가 문제해결에 관하여 후세에 영향을 크게 남긴 업적이라 할 수 있다. 따라서 본고에서는 그의 방법에 초점을 맞추어 분석하도록 한다.

  • PDF

지렛대 원리를 활용한 선분의 비에 관련된 도형 문제의 해결에 대한 연구 (A Study on Solving Geometry Problems related with the Ratio of Segments Using the Principle of the Lever)

  • 한인기;홍동화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제20권4호
    • /
    • pp.621-634
    • /
    • 2006
  • In this study we describe the characteristics of solving geometry problems related with the ratio of segments using the principle of the lever and the center of gravity, compare and analyze this problem solving method with the traditional Euclidean proof method and the analytic method.

  • PDF

중학생의 성취수준에 따른 기하 문제해결의 특징 탐색 (Research for Distinctive Features of Geometry Problem Solving According to Achievement Level on Middle School Students)

  • 김기연;김선희
    • 대한수학교육학회지:학교수학
    • /
    • 제8권2호
    • /
    • pp.215-237
    • /
    • 2006
  • 본 연구는 국가수준 학업성취도에 따라 구분된 학생들의 성취수준별로 기하 문제해결에서 어떤 특정을 보이는지를 탐색하려 하였다. 기초학력, 보통학력, 우수학력 학생 3 명씩을 동질그룹으로 구성하여 교사의 도움 없이 비정형적인 기하 문제를 해결하게 하였고, 관찰을 통해 성취수준별로 기하 개념 발달 수준이 어떠한지, 문제 해결의 방법을 선택할 때 어떤 접근을 하는지를 분석하였다. 기초학력 학생들은 모양과 실용 기하의 개념 수준에서 문제해결에서 무엇을 할 수 있는가에 초점을 둔 물리적, 구체적 행동을 보였고, 보통학력 학생들은 실용 기하와 유클리드 기하의 수준에서 문제해결을 위해 무엇을 해야 하는가에 초점을 두어 문제해결의 여러 가지 방법을 탐색했으며, 우수학력 학생들은 실용 기하와 유클리드 기하의 수준에서 일반화와 정당화를 통해 문제해결의 본질에 접근하려 하였다. 본 연구는 이에 따라 학생들의 수준별 수학 학습을 지도하는 것에 대한 시사점을 제안하였다.

  • PDF

공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과 (The Effect of Geometry Learning through Spatial Reasoning Activities on Mathematical Problem Solving Ability and Mathematical Attitude)

  • 신근미;신항균
    • 한국초등수학교육학회지
    • /
    • 제14권2호
    • /
    • pp.401-420
    • /
    • 2010
  • 본 연구는 공간추론활동을 통한 기하학습이 수학적 문제해결력과 수학적 태도에 미치는 효과를 알아보는데 목적이 있다. 이러한 연구 목적을 규명하기 위하여 서울특별시 소재의 초등학교 6학년 2개 반을 연구대상으로 선정하여 실험집단에는 공간추론활동을 통한 기하학습을, 비교집단에는 일반적인 기하학습을 실시하였다. 학습내용은 6학년 1, 2학기 단원에서 선정하였으며 이를 바탕으로 실험집단과 비교집단에 적용할 지도안, 활동지를 작성하여 4주 동안 11차시를 적용하였다. 그 결과, 공간추론활동을 통한 기하학습을 한 실험집단과 일반적인 기하학습을 한 비교집단의 사후 수학적 문제해결력에서 통계적으로 유의미한 차이가 존재하였다. 수학적 태도에서는 유의미한 차이는 보이지 않았지만 실험 집단 내에서는 실험 전에 비하여 실험 처치 후에 수학적 태도가 유의미하게 향상되었음을 알 수 있었다. 이와 같은 결과로부터, 공간추론활동을 통한 기하학습은 학생들의 분석력, 공간감각능력, 논리력을 향상시켜 이를 종합적으로 발휘해야 해결할 수 있는 수학적 문제해결력을 신장시키고 수학적 태도에 긍정적인 영향을 미친다는 것을 알 수 있었다.

  • PDF

How do one expert mathematics teacher in China implement deep teaching in problem-solving and problem-posing classroom: A case study

  • Yanhui Xu
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제27권1호
    • /
    • pp.1-24
    • /
    • 2024
  • In this paper, the author analyzed characteristics of deep mathematics learning in problem solving and problem-posing classroom teaching. Based on a simple wrong plane geometry problem, the author describes the classroom experience how one expert Chinese mathematics teacher guides students to modify geometry problems from solution to investigation, and guides the students to learn how to pose mathematics problems in inquiry-based deep learning classroom. This also demonstrates how expert mathematics teacher can effectively guide students to teach deep learning in regular classroom.

기하 문제 학습을 위한 동적 추론 체계 (A Dynamic Inferential Framework for Learning Geometry Problem Solving)

  • 국형준
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권4호
    • /
    • pp.412-421
    • /
    • 2000
  • 수리나 과학 영역의 학습은 원리 이해와 응용을 위주로 함에도 불구하고 기존의 교육용 소프트웨어 제품들은 단순 주입식이나 단답식의 학습을 지원하는 것이 대부분이어서 높은 학습 성과를 기대하기는 어려운 실정이다. 인공 지능 연구에서 지식 표현 체계나 탐색, 추론 기법이 학습기 설계에 도입되어 증명기, 모의 실험기 유형의 학습기 연구에는 상당한 진전을 보아 왔으나 여전히 실용적 수준이라 할 수는 없고 특히 문제 해결을 지원하는 학습기는 설계 모형조차 제시되지 못하고 있다. 본 연구가 설계한 기하 문제 학습기는 학습과 병행하는 동적 추론을 구사한다. 실시간 문제 해결을 지원하기 위한 정보 구성요소로서 명제, 가설 및 연산자에 의해 문제 공간을 정의하고 이들의 생성과 검증을 추론의 주요 대상으로 하는 대화식 문제 학습의 메카니즘을 탐구하였다. 성취한 결과로서 기하 문제 해결에서 필수 불가결한 요소임에도 불구, 기존 시스템이 간과해 왔던 대수 처리를 위한 일련의 추론 전략을 연계적으로 구사함으로서 실용성있는 문제 학습기의 설계 모형을 얻었다. 제안 모형은 물리, 전자 회로 등 타 과학 영역의 문제 학습기 설계에도 적용될 수 있다.

  • PDF

Enhancing Geometry and Measurement Learning Experiences through Rigorous Problem Solving and Equitable Instruction

  • Seshaiyer, Padmanabhan;Suh, Jennifer
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제25권3호
    • /
    • pp.201-225
    • /
    • 2022
  • This paper details case study vignettes that focus on enhancing the teaching and learning of geometry and measurement in the elementary grades with attention to pedagogical practices for teaching through problem solving with rigor and centering equitable teaching practices. Rigor is a matter of equity and opportunity (Dana Center, 2019). Rigor matters for each and every student and yet research indicates historically disadvantaged and underserved groups have more of an opportunity gap when it comes to rigorous mathematics instruction (NCTM, 2020). Along with providing a conceptual framework that focuses on the importance of equitable instruction, our study unpacks ways teachers can leverage their deep understanding of geometry and measurement learning trajectories to amplify the mathematics through rigorous problems using multiple approaches including learning by doing, challenged-based and mathematical modeling instruction. Through these vignettes, we provide examples of tasks taught through rigorous problem solving approaches that support conceptual teaching and learning of geometry and measurement. Specifically, each of the three vignettes presented includes a task that was implemented in an elementary classroom and a vertically articulated task that engaged teachers in a professional learning workshop. By beginning with elementary tasks to more sophisticated concepts in higher grades, we demonstrate how vertically articulating a deeper understanding of the learning trajectory in geometric thinking can add to the rigor of the mathematics.

대수와 기하의 수학적 연결성 지도를 위한 Khayyam과 Al-Kāshi의 문제 해결 방법 재조명 및 시각화 (The reinterpretation and visualization for methods of solving problem by Khayyam and Al-Kāshi for teaching the mathematical connection of algebra and geometry)

  • 김향숙;박시은
    • East Asian mathematical journal
    • /
    • 제37권4호
    • /
    • pp.401-426
    • /
    • 2021
  • In order to propose ways to implement mathematical connection between algebra and geometry, this study reinterpreted and visualized the Khayyam's geometric method solving the cubic equations using two conic sections and the Al-Kāshi's method of constructing of angle trisection using a cubic equation. Khayyam's method is an example of a geometric solution to an algebraic problem, while Al-Kāshi's method is an example of an algebraic a solution to a geometric problem. The construction and property of conics were presented deductively by the theorem of "Stoicheia" and the Apollonius' symptoms contained in "Conics". In addition, I consider connections that emerged in the alternating process of algebra and geometry and present meaningful Implications for instruction method on mathematical connection.

동적 기하 환경의 문제 해결 과정에서 연속 스펙트럼 활용에 대한 소고 (A study on the use of continuous spectrum in problem solving in a dynamic geometry environment)

  • 허남구
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제60권4호
    • /
    • pp.543-554
    • /
    • 2021
  • 동적 기하 환경은 학생들의 기하 문제 해결에 긍정적인 역할을 한다. 학생들은 드래깅을 통해 변화 속에서 불변성을 추측할 수 있으며, 분석법은 기하 문제를 해결하는 데 도움을 준다. 하지만 드래깅 활동과 분석법을 활용한 문제 해결은 제한점이 있으며, 연속 스펙트럼은 대안이 될 수 있다. 학생들은 코딩이 결합된 동적 기하 환경에서 프로그래밍을 통해 연속 스펙트럼을 구현할 수 있다. 이에 본 연구에서는 동적 기하 환경의 문제 해결에서 연속 스펙트럼을 활용하는 방안을 제시하였다. 학생들은 문제 해결의 이해 단계에서 시각적으로 표현된 문제 상황을 통해 즉각적으로 이해하고, 계획 단계에서 해결 전략을 수립하고, 반성 단계에서 결과의 점검 및 일반화하는 데 도움을 줄 수 있다.