• Title/Summary/Keyword: geometry learning

Search Result 243, Processing Time 0.022 seconds

An analysis of the use of technology tools in high school mathematics textbooks based (고등학교 수학 교과서의 공학 도구 활용 현황 분석)

  • Oh, Se Jun
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.263-286
    • /
    • 2024
  • With the introduction of AI digital textbooks, interest in the use of technology tools in mathematics education is increasing. Technology tools have the advantage of visualizing mathematical concepts and discovering mathematical principles through experimentation and inquiry. The 2015 revised mathematics curriculum in Korea already mentions the use of technology tools, and accordingly, various teaching and learning activities using technology tools are presented in mathematics textbooks. However, there is still a lack of systematic analysis on the types and utilization methods of technology tools presented in textbooks. Therefore, this study analyzed the current status of the use of technology tools presented in high school mathematics textbooks based on the 2015 revised curriculum. To this end, the types of technology tools presented in mathematics textbooks were categorized, and the utilization ratio of each category was investigated. In addition, the utilization patterns of technology tools were analyzed by subject and content area, and the utilization ratio of technology tools according to the type of teaching and learning activities was examined. The results showed that technology tools were used in various types and ratios according to the subject and content area. In particular, technology tools in the symbol-manipulation graphing software category accounted for 58% of the total usage cases, showing the highest proportion. By subject, the use of symbol-manipulation graphing software was prominent in subjects dealing with the analysis area, while the use of dynamic geometry software was relatively high in the geometry area. In terms of teaching and learning activity types, the utilization ratio of auxiliary tool type (49%) and intended inquiry induction type (37%) was high. The results of this study show that technology tools play various roles in mathematics textbooks and provide useful implications for improving mathematics teaching and learning methods using technology tools in the future. Furthermore, it can contribute to the establishment of educational policies related to AI digital textbooks and the development of teacher training programs.

Students' Learning of Geometry through Freudenthal's Mathematizaton (수학화에 의한 도형지도에서 학생의 학습발달 과정 연구)

  • Go, Sang-Suk;Jang, Deok-Im
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.427-440
    • /
    • 2004
  • Freudenthal의 수학화 이론에 대한 지금까지의 대부분의 연구는 이론의 탐색에 집중하고 이에 따른 학습 지도 방안과 자료개발에만 역점을 두었던 것이 그 한계점으로 지적되어져 왔다. 이에 본 연구자는 실제 이 이론이 어떻게 학습 현장에 적용될 수 있는지에 대해 첫째, Freudenthal의 수학화에 의한 도형 지도에서 학생이 어떻게 수학화를 이루어 가는지를 조사하였고, 둘째, 학습의 주체자인 학생들의 능동적인 활동을 강조한 수학화 과정에서 교수의 주체자인 교사는 학생들의 수학화가 원만히 이루어지게 하기 위하여 어떤 역할을 수행하게 되는지를 중학교 1학년 학생을 대상으로 사례연구를 실시하여 조사하였다.

  • PDF

미적분법의 발명을 중심으로 살펴본 과학혁명기의 기하학과 대수학의 관계

  • 김동원
    • Journal for History of Mathematics
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 1997
  • The paper aims to analyse the development of algebra and calculus during the Scientific Revolution. It will argue that the introduction of algebra into the learning world was never smooth but invited struggle with traditional geometry, which is well illustrated in the development of calculus in the 17th century. The paper will also demonstrate that the invention and the acceptance of calculus had been influenced by the need of solving practical problems (e. g., motion) during the century.

  • PDF

Analysis of the Learning Experience of College Students According to the 2015 Revised National Curriculum (문이과 통합형 개정 교육과정에 따른 이공계열 신입생의 고교 수학 및 과학 교과목 학습경험 분석: S 대학교를 중심으로)

  • Sinn, Dongjoo;Kim, Jinho
    • Journal of Engineering Education Research
    • /
    • v.25 no.1
    • /
    • pp.3-11
    • /
    • 2022
  • The purpose of this study is to empirically analyze the learning experiences of high school mathematics and science subjects of new students in science and engineering, and to provide basic data and respond to strengthen basic knowledge of science and engineering students in the future. The subjects of the survey were 481 freshmen in science and engineering at S University. First, as a result of analyzing the learning experiences of freshmen, the geometric subjects were significantly lower, which is the result of students' sensitive responses to transitional changes in the curriculum and SAT system after revision. In science, general elective subjects were higher than career elective subjects, and there was a deviation between science subjects, which is a result of reflecting the diversity and hierarchy of science subjects. Next, as a result of analyzing the difference in learning experience after revision compared to before the revision of the curriculum, the learning experience of Mathematics II increased significantly and the geometry decreased significantly. Both Chemistry I and II increased significantly compared to before the revision, and Earth Science I decreased significantly. This can be seen as a result of strategic choices based on obtaining grades in the CSAT and disadvantages in college entrance exams. As a result of the study, students' sensitive reactions to changes in the high school education environment were confirmed, basic mathematics and science-related courses were opened to alleviate variations in the academic ability due to elective courses, and countermeasures tailored to each university's situation.

Augmented Reality based Learning System for Solid Shapes (증강현실 기반 입체도형 학습도구 시스템)

  • Yeji Mun;Daehwan Kim;Dongsik Jo
    • Smart Media Journal
    • /
    • v.13 no.5
    • /
    • pp.45-51
    • /
    • 2024
  • Recently, realistic contents such as virtual reality(VR) and augmented reality (AR) are widely used for education to provide beneficial learning environments with thee-dimensional(3D) information and interactive technology. Specially, AR technology will be helpful to intuitively understand by adding virtual objects registered in the real learning environment with effective ways. In this paper, we developed an AR learning system using 3D spatial information in the 2D based textbook for studying math related to geometry. In order to increase spatial learning effect, we applied to solid shapes such as prisms and pyramids in mathematics education process. Also, it allows participants to use various shapes and expression methods (e.g., wireframe mode) with interaction. We conducted the experiment with our AR system, evaluated achievement and interest. Our experimental study showed positive results, our results are expected to provide effective learning methods in various classes through realistic visualization and interaction methods.

A Deep Learning-Based Rate Control for HEVC Intra Coding

  • Marzuki, Ismail;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.180-181
    • /
    • 2019
  • This paper proposes a rate control algorithm for intra coding frame in HEVC encoder using a deep learning approach. The proposed algorithm is designed for CTU level bit allocation in intra frame by considering visual features spatially and temporally. Our features are generated using visual geometry group (VGG-16) with deep convolutional layers, then it is used for bit allocation per each CTU within an intra frame. According to our experiments, the proposed algorithm can achieve -2.04% Luma component BD-rate gain with minimal bit accuracy loss against the HM-16.20 rate control model.

  • PDF

Looking at HPM through an Old Chestnut: Sum of the Angles of a Triangle

  • Siu, Man Keung
    • Journal for History of Mathematics
    • /
    • v.26 no.5_6
    • /
    • pp.345-353
    • /
    • 2013
  • Some teachers do not regard the computation of the sum of the angles of a triangle by using a cut-and-paste or paper-folding method as providing a proof that the sum of the angles of a triangle is equal to two right angles. Some even think that this way of working is not mathematics but more like an experiment in physics. Some see the method as no better than measurement of the angles by a protractor. The author will examine this issue in the teaching and learning of school geometry and more generally as a specific example from the perspective of HPM (History and Pedagogy of Mathematics).

Empirical and Mathematical Study on the Brachistochrone Problem (최소시간 강하선 문제의 실증적·수학적 고찰)

  • Lee, Dong Won;Lee, Yang;Chung, Young Woo
    • East Asian mathematical journal
    • /
    • v.30 no.4
    • /
    • pp.475-491
    • /
    • 2014
  • We can easily see the 'cycloid slide' in the many mathematics and science museums. The educational materials, however, do not give us any mathematical principle. For this reason, we, in this thesis, first study the brachistochrone problem in the history of mathematics, and suggest a method of how to teach the principle using 'the dynamic geometry software GSP5' in order to help students understand the idea that the cycloid is the brachistochrone. Secondly, we examine the origin of the calculus of variations and apply it to prove the brachistochrone problem in order to build up the teachers' background knowledge. This allows us to increase the worth of history of mathematics and recognize how useful the learning is which uses technological tools or materials, and we can expect that the learning which makes use of cycloid slide will be meaningful.

수준상승에 기초한 수학학습지도에 관한 연구

  • Lim, Dae-Keun;Kim, Hyun-Jung
    • East Asian mathematical journal
    • /
    • v.28 no.4
    • /
    • pp.353-361
    • /
    • 2012
  • In this paper, we apply mathematising activities to geometry contents of corrent in middle and high school in order to actualize learning and teaching through Freudenthal's, Piaget's, and Van Hieles's mathematising among many theories affecting teaching and learning methods. Learners find out mathematical idea through the activities of mathematising that interprete mathematical problemm. And we derive mathematic through the experience of vertical mathematising that expresses it. Based on it, Freudenthal's progressive mathematising process, etc are used in doing the activities of applicative mathematising.

Development of educational software for beam loading analysis using pen-based user interfaces

  • Suh, Yong S.
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • Most engineering software tools use typical menu-based user interfaces, and they may not be suitable for learning tools because the solution processes are hidden and students can only see the results. An educational tool for simple beam analyses is developed using a pen-based user interface with a computer so students can write and sketch by hand. The geometry of beam sections is sketched, and a shape matching technique is used to recognize the sketch. Various beam loads are added by sketching gestures or writing singularity functions. Students sketch the distributions of the loadings by sketching the graphs, and they are automatically checked and the system provides aids in grading the graphs. Students receive interactive graphical feedback for better learning experiences while they are working on solving the problems.