• 제목/요약/키워드: geometrically nonlinear buckling

검색결과 80건 처리시간 0.026초

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plates

  • Lee, Jae-Wook;Chung, Kie-Tae;Yang, Young-Tae
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.91-100
    • /
    • 1993
  • A displacement-based finite element method Is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. A nonlinear degenerated shell element and a nonlinear degenerated eccentric isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and Updated Lagrangian descriptions. In the formulation of the isobeam element, some additional local decrees of freedom are implementd to describe the stiffener's local plate buckling modes. Therefore this element can be effectively employed to model the eccentric stiffener with fewer D.O.F's than the case of a degenerated shell element. Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are performed to estimate the critical buckling loads and the post buckling behaviors including the local plate buckling of the stiffeners discretized with the degenerated shell elements and the isobeam elements. The critical buckling loads are found to be higher than the analytical plate buckling load but lower than Euler buckling load of the corresponding column, i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

  • PDF

단층 래티스 돔의 기하학적 비선형 좌굴하중 추정에 관한 연구 (A Study on the Presumption of Geometrically Nonlinear Buckling Load of the Single Layer Layer Latticed Dome)

  • 이정현;최일섭;이상주;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.12-19
    • /
    • 2005
  • The single layer latticed dome is very sensitive on the slenderness ratio and half open angle of the elements, load condition and the connection type because it is organized by a lot of thin elements, so we have to use the geometrically nonlinear buckling load when the buckling behavior of the structures is analyzed But, it is very difficult to design the single layer latticed domes considered all conditions. Therefore the purpose of this paper is to propose the appropriate design method of the single layer latticed dome considered the geometrically nonlinear buckling load in base on the linear buckling load by the eigen-value analysis.

  • PDF

단층 래티스 돔의 기하학적 비선형 좌굴하중 추정에 관한 연구 (A Study on the Presumption of Geometrically Nonlinear Buckling Load of the Single Layer Latticed Dome)

  • 이정현;이상주;이진섭;최일섭;한상을
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2005년도 춘계학술발표회 및 정기총회 2권1호(통권2호)
    • /
    • pp.147-153
    • /
    • 2005
  • The single layer latticed dome is very sensitive on the slenderness ratio and half open angle of the elements, load condition, and the connection type because it is originazed by a lot of thin elements, so we have to use the geometrically nonlinear buckling load when the buckling of the structures is analyzed. But, it is very difficult to design the single layer latticed domes considered all conditions. Therefore the purpose of this paper is to propose the appropriate design method of the single layer latticed dome considered the geometrically nonlinear buckling load in base of the linear buckling load by the eigenvalue analysis.

  • PDF

Post-buckling analysis of aorta artery under axial compression loads

  • Akbas, Seref Doguscan;Mercan, Kadir;Civalek, Omer
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.255-264
    • /
    • 2020
  • Buckling and post-buckling cases are often occurred in aorta artery because it affected by higher pressure. Also, its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. In this paper, post-buckling analysis of aorta artery is investigated under axial compression loads on the basis of Euler-Bernoulli beam theory by using finite element method. It is known that post-buckling problems are geometrically nonlinear problems. In the geometrically nonlinear model, the Von Karman nonlinear kinematic relationship is employed. Two types of support conditions for the aorta artery are considered. The considered non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The aorta artery is modeled as a cylindrical tube with different average diameters. In the numerical results, the effects of the geometry parameters of aorta artery on the post-buckling case are investigated in detail. Nonlinear deflections and critical buckling loads are obtained and discussed on the post-buckling case.

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.

단층 래티스 돔의 좌굴하중 산정식에 관한 연구 (A Study on the Bucking Load Formulae for the Single Layer Latticed Dome)

  • 한상을;양재근;이상주;이정현
    • 한국공간구조학회논문집
    • /
    • 제6권1호
    • /
    • pp.75-82
    • /
    • 2006
  • 단층 래티스 돔은 작은 단면의 선 부재 조합으로 전체구조물이 구성되는 특성상 구성부재의 세장비, 부재 반개각 하중조건, 접합부 특성 등에 매우 큰 영향을 받으므로, 비선형 좌굴해석에 의한 좌굴하중을 사용해야 하지만 여러 가지 현실적 제약이나 문제점 등에 의해 이러한 것이 제대로 반영되지 않은 설계가 이루어지고 있다. 이러한 이유로 돔 구조물의 설계 시 부재의 과다 설계, 자유로운 형상 설계의 제약 등의 문제점들이 나타나는 것이 지금의 현실이다. 따라서 이 논문의 목적은 위에서 언급된 문제점을 해결하기 위하여 고유치 해석을 통한 선형 좌굴해석에 기초한 비선형 좌굴하중을 예측하고 이를 이용함으로서 보다 효과적인 설계를 가능케 하는 설계식을 제안하는 데 있다.

  • PDF

핀접합 단층래티스돔의 좌굴특성에 관한 형상초기부정의 영향 (The Effects of the Geometrically Initial Imperfection on Buckling Characteristics of pin-Jointed Single-Layer Lattice Domes)

  • 정환목
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.769-777
    • /
    • 1998
  • 본 연구의 목적은 삼각형네트워크를 갖는 핀접합 단층래티스돔이 형상초기부정을 가질 경우 하중상태에 따라 좌굴특성에 미치는 영향을 검토하는 것이다. 또한 형상초기부정을 고려하는 단층래티스돔의 일반화 좌굴내력식의 개발을 위한 기초자료를 수집하는데 있다. 해석은 유한요소법에 의한 이산화해석법을 이용했다.

  • PDF

Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour

  • Krommer, Michael;Vetyukova, Yury;Staudigl, Elisabeth
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.155-181
    • /
    • 2016
  • In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation, for which a Finite Element implementation is introduced. Then, a simplified theory based on the von Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported plates with polygonal planform. The governing equations of this theory are solved using a Galerkin procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional equations. Finally, numerical results are presented using the Finite Element implementation for the fully geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then verified by a comparison with the numerical solutions.

편심 보강평판의 기하학적 비선형 해석 (Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate)

  • 이재욱;정기태;양영태
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.307-317
    • /
    • 1991
  • 선체구조 및 해양구조물의 기본 구조요소로 사용되는 편심으로 보강된 평판이나 쉘 수조물의 기하하적 비선형 해석에 관한 논문으로서 사용된 유한요소는 격하 쉘요소와 편심된 격하보요소이며 total Lagrange(T.L.)수식과 updated Lagrange(U.L.)수식으로 정식화 하였다. 편심된 보강평판의 비선형 해석에서 사용된 모델은 보강재의 이상화 방법에 따라 평판과 보강재를 격하 쉘요소로 이상화한 모델과 평판은 격하 쉘요소로하고 보강재는 편심된 격하 보요소로 이상화한 모델로 각각 구분하여 비선형 해석을 수행하였으며 해석과정에서 편심 보강평판의 임계하중을 구하고 좌굴 후 비선형 거동을 조사하였다. 해석된 임계 좌굴하중은 선급에서 규정하고 있는 방식의 오일러의 좌굴하중값 보다는 낮게 조사되었다.

  • PDF