• 제목/요약/키워드: geometrically nonlinear analysis

검색결과 201건 처리시간 0.031초

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

A dual approach to perform geometrically nonlinear analysis of plane truss structures

  • Habibi, AliReza;Bidmeshki, Shaahin
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.13-25
    • /
    • 2018
  • The main objective of this study is to develop a dual approach for geometrically nonlinear finite element analysis of plane truss structures. The geometric nonlinearity is considered using the Total Lagrangian formulation. The nonlinear solution is obtained by introducing and minimizing an objective function subjected to displacement-type constraints. The proposed method can fully trace the whole equilibrium path of geometrically nonlinear plane truss structures not only before the limit point but also after it. No stiffness matrix is used in the main approach and the solution is acquired only based on the direct classical stress-strain formulations. As a result, produced errors caused by linearization and approximation of the main equilibrium equation will be eliminated. The suggested algorithm can predict both pre- and post-buckling behavior of the steel plane truss structures as well as any arbitrary point of equilibrium path. In addition, an equilibrium path with multiple limit points and snap-back phenomenon can be followed in this approach. To demonstrate the accuracy, efficiency and robustness of the proposed procedure, numerical results of the suggested approach are compared with theoretical solution, modified arc-length method, and those of reported in the literature.

고차 판 유한요소의 기하학적 비선형 해석 (Geometrically Nonlinear Analysis of Higher Order Plate Bending Finite Element)

  • 신영식
    • 대한토목학회논문집
    • /
    • 제8권3호
    • /
    • pp.1-10
    • /
    • 1988
  • 본 연구에서는 고차 판 유한요소의 판의 기하학적 비선형 해석에의 적용성을 고찰한다. 고차판요소는 3 차원 연속체로부터 Total Lagrangian 형태로 나타낸 운동방정식을 이산화하고 고차 판이론을 도입하여 유도한다. 유한변형을 고려한 기하학적 비션형 방정식은 Newton-Raphson반복법으로 내력벡터를 선형화하여 강도매트릭스를 반복계산하여 푼다. 요소매트릭스는 shear locking 현상을 피하기 위하여 Gauss 적분법을 이용한 선택적 감차적분으로 계산한다. 여러가지 예제해석을 통하여 고차 판요소의 효율성과 정확도를 고찰하였다.

  • PDF

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plates

  • Lee, Jae-Wook;Chung, Kie-Tae;Yang, Young-Tae
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.91-100
    • /
    • 1993
  • A displacement-based finite element method Is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. A nonlinear degenerated shell element and a nonlinear degenerated eccentric isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and Updated Lagrangian descriptions. In the formulation of the isobeam element, some additional local decrees of freedom are implementd to describe the stiffener's local plate buckling modes. Therefore this element can be effectively employed to model the eccentric stiffener with fewer D.O.F's than the case of a degenerated shell element. Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are performed to estimate the critical buckling loads and the post buckling behaviors including the local plate buckling of the stiffeners discretized with the degenerated shell elements and the isobeam elements. The critical buckling loads are found to be higher than the analytical plate buckling load but lower than Euler buckling load of the corresponding column, i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

  • PDF

단층 래티스 돔의 기하학적 비선형 좌굴하중 추정에 관한 연구 (A Study on the Presumption of Geometrically Nonlinear Buckling Load of the Single Layer Layer Latticed Dome)

  • 이정현;최일섭;이상주;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.12-19
    • /
    • 2005
  • The single layer latticed dome is very sensitive on the slenderness ratio and half open angle of the elements, load condition and the connection type because it is organized by a lot of thin elements, so we have to use the geometrically nonlinear buckling load when the buckling behavior of the structures is analyzed But, it is very difficult to design the single layer latticed domes considered all conditions. Therefore the purpose of this paper is to propose the appropriate design method of the single layer latticed dome considered the geometrically nonlinear buckling load in base on the linear buckling load by the eigen-value analysis.

  • PDF

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

Geometrically nonlinear analysis of thin-walled open-section composite beams

  • Vo, Thuc Phuong;Lee, Jae-Hong
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2008년도 춘계 학술발표회 논문집
    • /
    • pp.113-118
    • /
    • 2008
  • This paper presents a flexural-torsional analysis of thin-walled open-section composite beams. A general geometrically nonlinear model for thin-walled composite beams and general laminate stacking sequences is given by using systematic variational formulation based on the classical lamination theory. The nonlinear algebraic equations of present theory are linearized and solved by means of an incremental Newton-Raphson method. Based on the analytical model, a displacement-based one-dimensional finite element model is developed to formulate the problem. Numerical results are obtained for thin-walled composite beams under general loadings, addressing the effects of fiber angle, laminate stacking sequence and loading parameters.

  • PDF

호장법을 이용한 공간구조의 기하학적 비선형 해석에 관한 연구 (A Study on the Geometrically Nonlinear Analysis of Spatial Structures by Using Arc Length Method)

  • 한상을;이상주;이경수
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.381-386
    • /
    • 2007
  • The present study is concerned with the application of Constant arc-length method that proposed by Crisfield in the investigation of the geometrically nonlinear behaviour of spatial structures composed by truss or beam element. The arc-length method can trace the full nonlinear equilibrium path of Spatial structure far beyond the critical point such as limit or bifurcation point. So, we have developed the constant arc-length method of Crisfield to analysis spatial structure. The finite element formulation is used to develop the 3d truss/beam element including the geometrical nonlinear effect. In an effort to evaluate the merits of the methods, extensive numerical studies were carried out on a number of selected structural systems. The advantages of Constant arc length method in tracing the post-buckling behavior of spatial structures, are demonstrated.

  • PDF

Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • 제2권1호
    • /
    • pp.71-87
    • /
    • 2017
  • This study focuses on the efficiency and applicability of dynamic relaxation methods in form-finding of membrane structures. Membrane structures have large deformations that require complex nonlinear analysis. The first step of analysis of these structures is the form-finding process including a geometrically nonlinear analysis. Several numerical methods for form-finding have been introduced such as the dynamic relaxation, force density method, particle spring systems and the updated reference strategy. In the present study, dynamic relaxation method (DRM) is investigated. The dynamic relaxation method is an iterative process that is used for the static equilibrium analysis of geometrically nonlinear problems. Five different examples are used in this paper. To achieve the grading of the different dynamic relaxation methods in form-finding of membrane structures, a performance index is introduced. The results indicate that viscous damping methods show better performance than kinetic damping in finding the shapes of membrane structures.

핀접합 단층래티스돔의 좌굴특성에 관한 형상초기부정의 영향 (The Effects of the Geometrically Initial Imperfection on Buckling Characteristics of pin-Jointed Single-Layer Lattice Domes)

  • 정환목
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.769-777
    • /
    • 1998
  • 본 연구의 목적은 삼각형네트워크를 갖는 핀접합 단층래티스돔이 형상초기부정을 가질 경우 하중상태에 따라 좌굴특성에 미치는 영향을 검토하는 것이다. 또한 형상초기부정을 고려하는 단층래티스돔의 일반화 좌굴내력식의 개발을 위한 기초자료를 수집하는데 있다. 해석은 유한요소법에 의한 이산화해석법을 이용했다.

  • PDF