• 제목/요약/키워드: geometrical approach

검색결과 328건 처리시간 0.026초

6자유도 병렬형 매니퓰레이터의 작업공간결정을 위한 기하학적 접근 (Geometrical approach for the workspace of a 6-DOF parallel manipulator)

  • 김도익;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.217-220
    • /
    • 1996
  • In this paper, a fully geometrical method for the determination of the workspace of a 6-DOF parallel manipulator is presented using the concept of 4-bar linkage. The reachable and dexterous can be determined from the proposed algorithm. In order to evaluate the workspace, each leg is considered as an open chain, and two kinematic constraints are developed. The proposed method is verified by simulation.

  • PDF

New mathematical approach to calculate the geometrical efficiency using different radioactive sources with gamma-ray cylindrical shape detectors

  • Thabet, Abouzeid A.;Hamzawy, A.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1271-1276
    • /
    • 2020
  • The geometrical efficiency of a source-to-detector configuration is considered to be necessary in the calculation of the full energy peak efficiency, especially for NaI(Tl) and HPGe gamma-ray spectroscopy detectors. The geometrical efficiency depends on the solid angle subtended by the radioactive sources and the detector surfaces. The present work is basically concerned to establish a new mathematical approach for calculating the solid angle and geometrical efficiency, based on conversion of the geometrical solid angle of a non-axial radioactive point source with respect to a circular surface of the detector to a new equivalent geometry. The equivalent geometry consists of an axial radioactive point source with respect to an arbitrary elliptical surface that lies between the radioactive point source and the circular surface of the detector. This expression was extended to include coaxial radioactive circular disk source. The results were compared with a number of published data to explain how significant this work is in the efficiency calibration procedure for the γ-ray detection systems, especially in case of using isotropic radiating γ-ray sources in the form of point and disk shapes.

Prediction on load carrying capacities of multi-storey door-type modular steel scaffolds

  • Yu, W.K.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • 제4권6호
    • /
    • pp.471-487
    • /
    • 2004
  • Modular steel scaffolds are commonly used as supporting scaffolds in building construction, and traditionally, the load carrying capacities of these scaffolds are obtained from limited full-scale tests with little rational design. Structural failure of these scaffolds occurs from time to time due to inadequate design, poor installation and over-loads on sites. In general, multi-storey modular steel scaffolds are very slender structures which exhibit significant non-linear behaviour. Hence, secondary moments due to both $P-{\delta}$ and $P-{\Delta}$ effects should be properly accounted for in the non-linear analyses. Moreover, while the structural behaviour of these scaffolds is known to be very sensitive to the types and the magnitudes of restraints provided from attached members and supports, yet it is always difficult to quantify these restraints in either test or practical conditions. The problem is further complicated due to the presence of initial geometrical imperfections in the scaffolds, including both member out-of-straightness and storey out-of-plumbness, and hence, initial geometrical imperfections should be carefully incorporated. This paper presents an extensive numerical study on three different approaches in analyzing and designing multi-storey modular steel scaffolds, namely, a) Eigenmode Imperfection Approach, b) Notional Load Approach, and c) Critical Load Approach. It should be noted that the three approaches adopt different ways to allow for the non-linear behaviour of the scaffolds in the presence of initial geometrical imperfections. Moreover, their suitability and accuracy in predicting the structural behaviour of modular steel scaffolds are discussed and compared thoroughly. The study aims to develop a simplified and yet reliable design approach for safe prediction on the load carrying capacities of multi-storey modular steel scaffolds, so that engineers can ensure safe and effective use of these scaffolds in building construction.

Advanced numerical tool for composite woven fabric preforming

  • Cherouat, Abel;Borouchaki, Houman
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.1-16
    • /
    • 2015
  • In this paper, geometrical and mechanical approaches are proposed for the simulation of the draping of woven fabric onto complex parts. The geometrical discrete approach allows to define the ply shapes and fibres orientation in order to optimize the composite structural properties and the continuum meso-structural mechanical approach allows to take into account the mechanical properties of fibres and resin and the various dominating mode of deformation of woven fabrics during the forming process. Some numerical simulations of forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of our approaches.

다수의 스피커를 사용하는 선형 배열 시스템에서 기하학적 접근 방법을 통한 스윗 스팟 분석 (Sweet Spot Analysis of Linear Array System with a Large Number of Loudspeakers by Geometrical Approach Method)

  • 양훈민;박영진;박윤식
    • 한국소음진동공학회논문집
    • /
    • 제23권11호
    • /
    • pp.951-956
    • /
    • 2013
  • This paper describes techniques used to analyze the sweet spot of sound field reproduced by ear-level linear arrays of loudspeakers by geometrical approach method. Previous researches have introduced various sweet spot definitions in their own way. In general, sweet spot is defined as an area whose stereophonic sound effect is valid. Its size is affected by the geometrical arrangement of the system. In this paper, a case when plane waves are generated by linear arrays of loudspeakers in the horizontal plane is considered. So the sweet spot is defined as an area in which the listener can perceive the desired azimuth angle. Because there are many loudspeakers, impulse responses at listener's ears are in the form of pulse-train and the time-duration of the pulse-train affects the localization performance of the listener. So we calculated the maximum time duration of pulse-train by geometrical approach method and identified with the results of impulse response simulation. This paper also includes parameter analysis with respect to aperture size, so it suggests a tool for sound engineers to expect the sweet spot size and listener's sound perception.

평면 작업용 병렬 메카니즘의 특성 해석을 위한 기하학적 접근 (A Geometrical Approach to the Characteristic Analysis of Parallel Mechanism for Planar Task)

  • 송낙윤;조황
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.158-166
    • /
    • 1998
  • This paper presents a geometrical approach to the characteristic analysis of parallel mechanism with free joints intended for use as a planar task robot. Solution of the forward and inverse kinematic problems are described. Because the mechanism has only three degree-of-freedom output, constraint equations must be generated to describe the inter-relationship between actuated joints and free joints so as to describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. and it is used for the solution of the forward kinematic equations by Newton-Raphson technique. Another Jacobian matrix was derived to describe the interrelationship between actuated joints and moving platform. The stiffness, velocity transmission ratio, force transmission ratio and dexterity of the mechanism are then determined based on this another Jacobian matrix. The geometrical construction of the mechanism for the best performance was investigated using the characteristic analysis.

  • PDF

Predicting Lamina Yield from Logs of Different Diameters for Cross Laminated Timber Production

  • Jeong, Gi Young;Lee, Jun-Jae;Yeo, Hwanmyeong;Lee, So Sun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권6호
    • /
    • pp.809-820
    • /
    • 2016
  • The goal of this study was to predict lamina yield from logs of different diameter for production of cross laminated timber. Log characteristics of red pine (Pinus densiflora) and Japanese cedar (Cryptomeria japonica), including diameter, length, volume, and defects were used for statistical and geometrical analyses, along with the lamina characteristics, including width, thickness, and defects. Based on the data obtained, the strong factors influencing the yield and grade of lamina from the two species were statistically evaluated. A geometrical approach was used for analysis of the yield from logs of given diameters. Statistical analysis showed that lamina yield was dependent on target lamina size but the grade of lamina was not related to any of the log characteristics. The suggested yield equations from the geometrical approach indicated an accuracy of less than 20% difference.

평면 직렬 메커니즘의 기하학적 속도 및 힘 해석 (Geometrical Velocity and Force Analyses on Planar Serial Mechanisms)

  • 이찬;이재원;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

A new analytical approach for optimization design of adhesively bonded single-lap joint

  • Elhannani, M.;Madani, K.;Mokhtari, M.;Touzain, S.;Feaugas, X.;Cohendoz, S.
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.313-326
    • /
    • 2016
  • In this study the three-dimensional nonlinear finite element method was used to analyze the stresses distribution in the adhesive layer used to joint two Aluminum 2024-T3 adherends. We consider in this study the effect of different parameters witch directly affect the values of different stresses. The experimental design method is used to investigate the effects of geometrical parameters of the single lap joint in order to achieve an optimization of the assembly with simple lap joint. As a result, it can be said that both the geometrical modifications of the adhesive and adherends edge have presented a significant effect at the overlap edge thereby causing a decrease in peel and shear stresses. In addition, an analytical model is also given to predict in a simple but effective way the joint strength and its dependence on the geometrical parameters. This approach can help the designers to improve the quality and the durability of the structural adhesive joints.

하천 수계의 수리기하학적 특성에 관한 연구 - 하천 사행을 중심으로 - (The Hydraulic Geometrical Characteristics in Rivers - About river meandering -)

  • 송재우
    • 물과 미래
    • /
    • 제13권2호
    • /
    • pp.49-54
    • /
    • 1980
  • Meandering has been attributed to the earth's rotation, to the excessive slope and energy of a river, to changes in stage, etc. The purpose of this study is a geometrical approach of meander shape and to derive the relationship among meander characteristics. In the analysis of sime field examples, in spite of variety of meander shapes, the sine-generated curve was fit actual quite well and better than alternatives against the channel distance. An attempt is made to find considerable relation among meander characteristics. But width and meanderbelt did not show any defined trend considerable scatter of points was observed.

  • PDF